数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 434-449.
收稿日期:
2024-07-15
修回日期:
2024-10-15
出版日期:
2025-04-26
发布日期:
2025-04-09
通讯作者:
陆璐
E-mail:mxy922@163.com;lulu@zuel.edu.cn
作者简介:
孟笑莹,E-mail: 基金资助:
Received:
2024-07-15
Revised:
2024-10-15
Online:
2025-04-26
Published:
2025-04-09
Contact:
Lu Lu
E-mail:mxy922@163.com;lulu@zuel.edu.cn
Supported by:
摘要:
该文主要考虑一类含分数阶
中图分类号:
孟笑莹,陆璐. 含分数阶
Xiaoying Meng,Lu Lu. Existence and Asymptotic Behavior of Solutions for Kirchhoff Equations Involving the Fractional
[1] | Autuori G, Fiscella A, Pucci P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal, 2015, 125: 699-714 |
[2] | Bellazzini J, Jeanjean L, Luo T J. Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Possion equations. Proc Lond Math Soc, 2013, 107(3): 303-339 |
[3] | Berestycki H, Lions P L. Nonlinear scalar field equations I. Existence of a ground state. Arch Ration Mech Anal, 1983, 82(4): 313-345 |
[4] |
Caponi M, Pucci P. Existence theorems for entire solutions of stationary Kirchhoff fractional ![]() |
[5] |
Fan X L, Zhao Y Z, Zhao D. Compact imbedding theorems with symmetry of Strauss-Lions type for the space ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[6] | Frank R L, Lenzmann E, Silvestre L. Uniqueness of radial solutions for the fractional Laplacian. Commun Pure Appl Math, 2015, 69(9): 1671-1726 |
[7] | Frank R L, Seiringer R. Non-linear ground state representations and sharp Hardy inequalities. J Fun Anal, 2008, 255(12): 3407-3430 |
[8] | 古龙江, 孙志禹, 曾小雨. 一类约束变分问题极小元的存在性及其集中行为. 数学物理学报, 2017, 37A(3): 510-518 |
Gu L J, Sun Z Y, Zeng X Y. The existence of minimizers for a class of constrained variational problem with its concentration behavior. Acta Math Sci, 2017, 37A(3): 510-518 | |
[9] | 郭合林, 王云波. 关于一个约束变分问题的注记. 数学物理学报, 2017, 37A(6): 1125-1128 |
Guo H L, Wang Y B. A remark on a constrained variational problem. Acta Math Sci, 2017, 37A(6): 1125-1128 | |
[10] | Guo H L, Zhang Y M, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Comm Pure Appl Anal, 2018, 17: 1875-1897 |
[11] | He Q H, Lv Z Y, Zhang Y M, et al. Existence and blow up behavior of positive normalized solution to the Kirchhoff equation with general nonlinearities: Mass super-critical case. J Differ Equ, 2023, 356: 375-406 |
[12] |
He X M, Zou W M. Existence and concentration behavior of positive solutions for a Kirchhoff equation in ![]() ![]() |
[13] |
He Y, Li G B, Peng S J. Concentrating bound states for Kirchhoff type problems in ![]() ![]() |
[14] |
Huang X M, Zhang Y M. Existence and uniqueness of minimizers for ![]() ![]() |
[15] | Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28(10): 1633-1659 |
[16] |
Jeanjean L, Luo T J. Sharp nonexistence results of prescribed ![]() ![]() |
[17] | Kirchhoff G. Mechanik. Leipzig: Teubner, 1883 |
[18] | Li G B, Niu Y H. The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation. Acta Math Sci, 2020, 40B(1): 90-112 |
[19] |
Li G B, Yan S S. Eigenvalue problems for quasilinear elliptic equations on ![]() ![]() |
[20] | 李容星, 王文清, 曾小雨. 带椭球势阱的 Kirchhoff 型方程的变分问题. 数学物理学报, 2019, 39A(6): 1323-1333 |
Li R X, Wang W Q, Zeng X Y. A constrained variational problem of Kirchhoff type equation with ellipsoid-shaped potential. Acta Math Sci, 2019, 39A(6): 1323-1333 | |
[21] | Liu Z. Multiple normalized solutions for Choquard equation involving Kirchhoff type perturbation. Top Meth Nonlinear Ana, 2019, 54(1): 297-319 |
[22] | 柳志德, 王征平. 非线性 Kirchhoff 型椭圆方程的最低能量解. 数学物理学报, 2019, 39A(2): 264-276 |
Liu Z D, Wang Z P. Least energy solution for nonlinear Kirchhoff type elliptic equation. Acta Math Sci, 2019, 39A(2): 264-276 | |
[23] | Liu Z S, Squassina M, Zhang J J. Ground states for fractional Kirchhoff equaitons with critical nonlinearity in low dimension. Nonlinear Differ Equ Appl, 2017, 24: Article 50 |
[24] |
Mao A M, Chang H J. Kirchhoff type problems in ![]() ![]() |
[25] | Nezza E D, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques, 2012, 136(5): 521-573 |
[26] |
Pucci P, Saldi S. Critical stationary Kirchhoff equations in ![]() ![]() |
[27] |
Pucci P, Xiang M Q, Zhang B L. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff equations involving the fractional ![]() ![]() ![]() |
[28] | Wang Z Z, Zeng X Y, Zhang Y M. Multi-peak solutions of Kirchhoff equations involving subcritical or critical Sobolev exponents. Math Meth Applied Sci, 2020, 43(8): 5151-5161 |
[29] | 许诗敏, 王春花. Kirchhoff 方程单峰解的局部唯一性. 数学物理学报, 2020, 40A(2): 432-440 |
Xu S M, Wang C H. Local uniqueness of a single peak solution of a subcritical Kirchhoff problem in ![]() ![]() |
|
[30] | Ye H Y. The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Math Meth Applied Sci, 2015, 38(13): 2663-2679 |
[31] | Zeng X Y, Zhang Y M. Existence and uniqueness of normalized solutions for the Kirchhoff equation. Applied Math Letters, 2017, 74: 52-59 |
[1] | 王国正,史振霞. 具有移动环境的 Lotka-Volterra 合作系统周期强迫波的存在性[J]. 数学物理学报, 2025, 45(2): 479-492. |
[2] | 李彬,谢莉. 具奇异敏感的趋向性犯罪模型中的警察威慑效应[J]. 数学物理学报, 2025, 45(2): 512-533. |
[3] | 张倩. 拟线性薛定谔方程组在有界区域上的正规化解[J]. 数学物理学报, 2025, 45(1): 1-30. |
[4] | 石金诚, 刘炎. 带不同幂次型非线性项的半线性三阶发展方程整体解的存在性与爆破[J]. 数学物理学报, 2024, 44(6): 1550-1562. |
[5] | 肖苏平, 赵元章. 一类半线性双曲型微分不等式非齐次 Dirichlet 外问题解的存在性与非存在性[J]. 数学物理学报, 2024, 44(5): 1167-1182. |
[6] | 鲁盈吟, 张文静, 郭金辉. 高斯三角阵的聚集点过程与部分和的联合渐近行为[J]. 数学物理学报, 2024, 44(5): 1311-1318. |
[7] | 靳振峰, 孙红蕊, 张为民. Kirchhoff 型方程正规化解的多重性及渐近行为[J]. 数学物理学报, 2024, 44(4): 871-884. |
[8] | 张广新, 杨赟瑞, 宋雪. 具有非局部效应的时滞SEIR系统的周期行波解[J]. 数学物理学报, 2024, 44(1): 140-159. |
[9] | 李仁华, 王征平. 含强制位势的分数阶薛定谔泊松方程的正规化解[J]. 数学物理学报, 2023, 43(6): 1723-1730. |
[10] | 廖远康. 粘性依赖于密度的一维等熵可压缩 Navier-Stokes 方程组粘性激波的非线性稳定性[J]. 数学物理学报, 2023, 43(4): 1149-1169. |
[11] | 归坤明,陶虹杉,杨俊. 含混合项的拟线性Schrödinger方程的正规化基态解[J]. 数学物理学报, 2023, 43(4): 1062-1072. |
[12] | 李永祥,韦启林. Banach空间半线性发展方程周期解的存在性结果及应用[J]. 数学物理学报, 2023, 43(3): 702-712. |
[13] | 武文俊,杨光惠,房才雅,杨辉. 主从群体博弈合作均衡的通有稳定性[J]. 数学物理学报, 2023, 43(3): 921-929. |
[14] | 安雁宁, 刘文军, 孔奥文. 带分数阶磁效应的压电梁在有/无热效应时的稳定性[J]. 数学物理学报, 2023, 43(2): 355-376. |
[15] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 73
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|