数学物理学报 ›› 2025, Vol. 45 ›› Issue (1): 74-91.
收稿日期:
2023-09-04
修回日期:
2023-12-25
出版日期:
2025-02-26
发布日期:
2025-01-08
通讯作者:
* 刘洋, E-mail:作者简介:
李心, E-mail:基金资助:
Xin Li(),Wenjuan Hao(
),Yang Liu*(
)
Received:
2023-09-04
Revised:
2023-12-25
Online:
2025-02-26
Published:
2025-01-08
Supported by:
摘要:
该文研究了定义在有界域上的三维轻微可压缩广义 Brinkman-Forchheimer 方程解的适定性和长时间性态问题. 该方程模拟了由 Lévy 耗散主导的穿越多孔介质流体的传输过程. 首先, 运用经典紧致性方法和先验估计证明了方程在能量空间上解的适定性. 其次, 引入系统分解思想: 一方面, 用局部化方法证明了方程收缩部分在初始能量空间中的有界性; 另一方面, 通过瞬时光滑化方法得到了方程光滑部分在高阶能量空间中的指数耗散性, 并最终验证了该方程在初始相空间中全局吸引子和指数吸引子的存在性.
中图分类号:
李心, 郝文娟, 刘洋. 广义 Brinkman-Forchheimer 方程的渐近性态[J]. 数学物理学报, 2025, 45(1): 74-91.
Xin Li, Wenjuan Hao, Yang Liu. The Asymptotic Behavior of the Generalized Brinkman-Forchheimer Equation[J]. Acta mathematica scientia,Series A, 2025, 45(1): 74-91.
[1] | Fan J, Zhou Y. Global well-posedness of the Navier-Stokes-omega equations. Appl Math Lett, 2011, 24(11): 1915-1918 |
[2] | Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157(1): 22-35 |
[3] | Paicu M, Zhang Z. Global well-posedness for 3D Navier-Stokes equations with ill-prepared initial data. J Inst Math Jussieu, 2014, 13(2): 395-411 |
[4] | Craig W, Huang X, Wang Y. Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations. J Math Fluid Mech, 2013, 15(4): 747-758 |
[5] | Chen Q, Miao C, Zhang Z. Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data. Pacific J Math, 2013, 262(2): 263-283 |
[6] |
Larios A, Pei Y, Rebholz L. Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations. J Differ Equations, 2019, 266(5): 2435-2465
doi: 10.1016/j.jde.2018.08.033 |
[7] | 孙小春, 何港晶. Navier-Stokes-Coriolis 方程解的长时间存在性. 数学物理学报, 2022, 42A(5): 1416-1423 |
Sun X C, He G J. Long time existence of the solutions for the Navier-Stokes-Coriolis equations. Acta Math Sci, 2022, 42A(5): 1416-1423 | |
[8] | Hajduk K W, Robinson J C. Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J Differ Equations, 2017, 263(11): 7141-7161 |
[9] | Kalantarov V, Zelik S. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun Pure Appl Anal, 2012, 11(5): 2037-2054 |
[10] | Markowich P A, Titi E S, Trabelsi S. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity, 2016, 29(4): Article 1292 |
[11] | Wang B, Lin S. Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation. Math Method Appl Sci, 2008, 31(12): 1479-1495 |
[12] | You Y, Zhao C, Zhou S. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete Contin Dyn Syst, 2012, 32(10): 3787-3800 |
[13] | Xueli S, Xi D, Baoming Q. Dimension estimate of the global attractor for a 3D Brinkman-Forchheimer equation. Wuhan University Journal of Natural Sciences, 2023, 28(1): 1-10 |
[14] | Caucao S, Esparza J. An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis. Journal of Computational and Applied Mathematics, 2024, 438: 115517 |
[15] | Ghidaglia J M, Temam R. Long time behavior for partly dissipative equations: the slightly compressible 2D-Navier-Stokes equations. Asymptotic Anal, 1988, 1(1): 23-49 |
[16] | Kalantarov V, Zelik S. Asymptotic regularity and attractors for slightly compressible Brinkman-Forchheimer equations. Appl Math Optim, 2021, 84(3): 3137-3171 |
[17] | Córdoba A, Córdoba D. A maximum principle applied to quasi-geostrophic equations. Comm Math Phys, 2004, 249(3): 511-528 |
[18] | 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解. 北京: 科学出版社, 2011 |
Guo B L, Pu X K, Huang F H. Fractional Partial Differential Equations and their Numerical Solutions. Beijing: Science Press, 2011 | |
[19] | Nguyen H Q. Global weak solutions for generalized SQG in bounded domains. Anal PDE, 2018, 11(4): 1029-1047 |
[20] | Constantin P, Ignatova M, Nguyen H Q. Inviscid limit for SQG in bounded domains. SIAM J Math Anal, 2018, 50(6): 6196-6207 |
[21] |
Liu Y, Sun C Y. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on ![]() ![]() |
[22] | 孙小春, 吴育联, 徐郜婷. 分数阶不可压缩 Navier-Stokes-Coriolis 方程解的整体适定性. 数学物理学报, 2024, 44A(3): 737-745 |
Sun X C, Wu Y L, Xu G T. Global well-posedness for the fractional Navier-Stokes equations with the Coriolis force. Acta Math Sci, 2024, 44A(3): 737-745 | |
[23] | Pata V. Uniform estimates of Gronwall type. J Math Anal Appl, 2011, 373(1): 264-270 |
[24] | Kalantarov V, Zelik S. Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J Differ Equations, 2009, 247(4): 1120-1155 |
[25] | Pata V, Zelik S. Smooth attractors for strongly damped wave equations. Nonlinearity, 2006, 19(7): 1495-1506 |
[26] | Zelik S. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun Pure Appl Anal, 2004, 3(4): 921-934 |
[27] |
Mei X Y, Savostianov A, Sun C Y, Zelik S. Infinite energy solutions for weakly damped quintic wave equations in ![]() ![]() |
[28] | Babin A V, Vishik M I. Attractors of Evolution Equations. Holland: Elsevier, 1992 |
[29] | Vishik M I, Chepyzhov V V. Trajectory attractors of equations of mathematical physics. Russian Math Surveys, 2011, 66(4): 637-731 |
[30] | Ladyzhenskaya O. Attractors for Semi-groups and Evolution Equations (Lezioni Lincee). Cambridge: Cambridge University Press, 1991 |
[31] | Miranville A, Zelik S. Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of Differential Equations: Evolutionary Equations, 2008, 4: 103-200 |
[32] | Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer-Verlag, 1997 |
[33] |
Efendiev M, Miranville A, Zelik S. Exponential attractors for a nonlinear reaction-diffusion system in ![]() ![]() |
[34] | Fabrie P, Galusinski C, Miranville A, Zelik S. Uniform exponential attractors for a singular perturbed damped wave equation. Discrete Contin Dyn Syst, 2004, 10(1/2): 211-238 |
[35] | Adams J F. Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974 |
[1] | 孙小春, 吴育联, 徐郜婷. 分数阶不可压缩 Navier-Stokes-Coriolis 方程解的整体适定性[J]. 数学物理学报, 2024, 44(3): 737-745. |
[2] | 张欣, 吴兴龙. 带立方非线性修正 Camassa-Holm 方程的初值问题[J]. 数学物理学报, 2024, 44(2): 376-383. |
[3] | 汪璇, 袁海燕. 具有时间依赖记忆核的非经典扩散方程的吸引子[J]. 数学物理学报, 2024, 44(2): 429-452. |
[4] | 刘国威, 王启玲. 一类时滞非牛顿流体在二维无界域上的适定性[J]. 数学物理学报, 2023, 43(6): 1789-1802. |
[5] | 彭青青,张志飞. 波方程与欧拉伯努利板方程耦合系统的全局吸引子[J]. 数学物理学报, 2023, 43(4): 1179-1196. |
[6] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[7] | 曾静,彭家玉. 一般经济均衡的本质稳定性及Hadamard适定性[J]. 数学物理学报, 2023, 43(3): 930-938. |
[8] | 朱凯旋, 孙涛, 谢永钦. 带有分布导数的反应扩散方程在![]() ![]() |
[9] | 林杰, 王天怡. 三维柱对称定常非齐次不可压 Euler 方程管道问题解的适定性及无穷远渐近速率[J]. 数学物理学报, 2023, 43(1): 219-237. |
[10] | 陈兴发, 钟澎洪. 一般幂次散焦导数薛定谔方程解在Hs中的不适定性[J]. 数学物理学报, 2022, 42(6): 1768-1781. |
[11] | 肖翔宇,蒲志林. Cahn-Hilliard-Brinkman系统的全局吸引子[J]. 数学物理学报, 2022, 42(4): 1027-1040. |
[12] | 孟庆春,张磊. 一类三维逆时热传导问题的数值求解[J]. 数学物理学报, 2022, 42(1): 187-200. |
[13] | 闵建中,刘宪高,刘子轩. 不可压液晶方程组的Serrin解[J]. 数学物理学报, 2021, 41(6): 1671-1683. |
[14] | 赖柏顺,罗勍. 一类刻画微机电模型四阶抛物型方程解的适定性[J]. 数学物理学报, 2021, 41(6): 1718-1733. |
[15] | 孙丹丹,李盈科,滕志东,张太雷. 具有年龄结构的麻疹传染病模型的稳定性分析[J]. 数学物理学报, 2021, 41(6): 1950-1968. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|