[1] Fan J, Zhou Y.Global well-posedness of the Navier-Stokes-omega equations. Appl Math Lett, 2011, 24(11): 1915-1918 [2] Koch H, Tataru D.Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157(1): 22-35 [3] Paicu M, Zhang Z.Global well-posedness for 3D Navier-Stokes equations with ill-prepared initial data. J Inst Math Jussieu, 2014, 13(2): 395-411 [4] Craig W, Huang X, Wang Y.Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations. J Math Fluid Mech, 2013, 15(4): 747-758 [5] Chen Q, Miao C, Zhang Z.Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data. Pacific J Math, 2013, 262(2): 263-283 [6] Larios A, Pei Y, Rebholz L.Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations. J Differ Equations, 2019, 266(5): 2435-2465 [7] 孙小春, 何港晶. Navier-Stokes-Coriolis 方程解的长时间存在性. 数学物理学报, 2022, 42A(5): 1416-1423 Sun X C, He G J. Long time existence of the solutions for the Navier-Stokes-Coriolis equations. Acta Math Sci, 2022, 42A(5): 1416-1423 [8] Hajduk K W, Robinson J C.Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J Differ Equations, 2017, 263(11): 7141-7161 [9] Kalantarov V, Zelik S.Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun Pure Appl Anal, 2012, 11(5): 2037-2054 [10] Markowich P A, Titi E S, Trabelsi S. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity, 2016, 29(4): Article 1292 [11] Wang B, Lin S.Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation. Math Method Appl Sci, 2008, 31(12): 1479-1495 [12] You Y, Zhao C, Zhou S.The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete Contin Dyn Syst, 2012, 32(10): 3787-3800 [13] Xueli S, Xi D, Baoming Q.Dimension estimate of the global attractor for a 3D Brinkman-Forchheimer equation. Wuhan University Journal of Natural Sciences, 2023, 28(1): 1-10 [14] Caucao S, Esparza J.An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis. Journal of Computational and Applied Mathematics, 2024, 438: 115517 [15] Hajduk K W, Robinson J C.Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J Differ Equations, 2017, 263(11): 7141-7161 [16] Ghidaglia J M, Temam R.Long time behavior for partly dissipative equations: the slightly compressible 2D-Navier-Stokes equations. Asymptotic Anal, 1988, 1(1): 23-49 [17] Kalantarov V, Zelik S.Asymptotic regularity and attractors for slightly compressible Brinkman-Forchheimer equations. Appl Math Optim, 2021, 84(3): 3137-3171 [18] Córdoba A, Córdoba D.A maximum principle applied to quasi-geostrophic equations. Comm Math Phys, 2004, 249(3): 511-528 [19] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解. 北京: 科学出版社, 2011 Guo B L, Pu X K, Huang F H. Fractional Partial Differential Equations and their Numerical Solutions. Beijing: Science Press, 2011 [20] Nguyen H Q.Global weak solutions for generalized SQG in bounded domains. Anal PDE, 2018, 11(4): 1029-1047 [21] Constantin P, Ignatova M, Nguyen H Q.Inviscid limit for SQG in bounded domains. SIAM J Math Anal, 2018, 50(6): 6196-6207 [22] Liu Y, Sun C Y.Inviscid limit for the damped generalized incompressible Navier-Stokes equations on ${{T}}^{2}$. Discrete Contin Dyn Syst Ser S, 2021, 14(12): 4383-4408 [23] 孙小春, 吴育联, 徐郜婷. 分数阶不可压缩 Navier-Stokes-Coriolis 方程解的整体适定性. 数学物理学报, 2024, 44A(3): 737-745 Sun X C, Wu Y L, Xu G T. Global well-posedness for the fractional Navier-Stokes equations with the Coriolis force. Acta Math Sci, 2024, 44A(3): 737-745 [24] Pata V.Uniform estimates of Gronwall type. J Math Anal Appl, 2011, 373(1): 264-270 [25] Kalantarov V, Zelik S.Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J Differ Equations, 2009, 247(4): 1120-1155 [26] Pata V, Zelik S.Smooth attractors for strongly damped wave equations. Nonlinearity, 2006, 19(7): 1495-1506 [27] Zelik S.Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun Pure Appl Anal, 2004, 3(4): 921-934 [28] Mei X Y, Savostianov A, Sun C Y, Zelik S.Infinite energy solutions for weakly damped quintic wave equations in ${{R}^{3}}$. Trans Amer Math Soc, 2021, 374(5): 3093-3129 [29] Babin A V, Vishik M I.Attractors of Evolution Equations. Holland: Elsevier, 1992 [30] Vishik M I, Chepyzhov V V.Trajectory attractors of equations of mathematical physics. Russian Math Surveys, 2011, 66(4): 637-731 [31] Ladyzhenskaya O.Attractors for Semi-groups and Evolution Equations (Lezioni Lincee). Cambridge: Cambridge University Press, 1991 [32] Miranville A, Zelik S.Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of Differential Equations: Evolutionary Equations, 2008, 4: 103-200 [33] Temam R.Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer-Verlag, 1997 [34] Efendiev M, Miranville A, Zelik S.Exponential attractors for a nonlinear reaction-diffusion system in ${{R}^{3}}$. C R Acad Sci Paris, 2000, 330(8): 713-718 [35] Fabrie P, Galusinski C, Miranville A, Zelik S.Uniform exponential attractors for a singular perturbed damped wave equation. Discrete Contin Dyn Syst, 2004, 10(1/2): 211-238 [36] Adams J F.Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974 |