[1] Levi J.HIV and the Pathogenesis of AIDS. Washington, D C: ASM Press, 2007 [2] 邓萌, 徐瑞. 一类具有CTL 免疫反应和免疫损害的 HIV 感染动力学模型的稳定性分析. 数学物理学报, 2022, 42A(5): 1592-1600 Deng M, Xu R.Stability analysis of an HIV infection dynamic model with CTL immune response and immune impairment. Acta Math Sci, 2022, 42A(5): 1592-1600 [3] 娄洁, 马之恩, 邵一鸣. HIV-1 的表型间变异与免疫因子相互作用的动力学模型. 数学物理学报, 2007, 27A(5): 898-906 Lou J, Ma Z, Shao Y M.Modelling the interactions between the HIV-1 phenotypes and the cytokines. Acta Math Sci, 2007, 27A(5): 898-906 [4] Wu P, Zhao H.Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains. Appl Math Model, 2020, 84: 240-264 [5] Rong L, Feng Z, Perelson A S.Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J Appl Math, 2007, 67(3): 731-756 [6] Wang W, Wang X N, Feng Z S.Time periodic reaction-diffusion equations for modeling 2-LTR dynamics in HIV-infected patients. Nonlinear Anal Real World Appl, 2021, 57: 103184 [7] Wu P, Zheng S, He Z R.Evolution dynamics of a time-delayed reaction-diffusion HIV latent infection model with two strains and periodic therapies. Nonlinear Anal Real World Appl, 2022, 67: 103559 [8] Vaidya N K, Rong L.Modeling pharmacodynamics on HIV latent infection: choice of drugs is key to successful cure via early therapy. SIAM J Appl Math, 2017, 77(5): 1781-1804 [9] UNAIDS. AIDS by the numbers in2020. [2022] URL https://www.unaids.org/en [10] 吴鹏, 何泽荣. 具有非局部感染和周期治疗的 HIV 感染模型的时空动力学分析. 数学物理学报, 2024, 44A(1): 209-226 Wu P, He Z R.Spatial-temporal dynamics of HIV infection model with periodic antiviral therapy and nonlocal infection. Acta Math Sci, 2024, 44A(1): 209-226 [11] 吴鹏, 赵洪涌. 基于空间异质反应扩散 HIV 感染模型的最优治疗策略. 应用数学学报, 2022, 45(5): 752-766 Wu P, Zhao H Y.Optimal treatment strategies for a reaction-dffusion HIV infection model with spatial heterogeneity. Acta Mathematicae Applicatae Sinica, 2022, 45(5): 752-766 [12] 吴鹏, 王秀男, 何泽荣. 一类具有Dirichlet 边界条件的年龄-空间结构 HIV/AIDS 传染病模型的动力学分析. 数学物理学报, 2023, 43A(3): 970-984 Wu P, Wang X N, He Z R.Dynamical analysis of an age-space structured HIV/AIDS model with homogeneous Dirichlet boundary condition. Acta Math Sci, 2023, 43A(3): 970-984 [13] Wang X, Yang J.Dynamics of a nonlocal dispersal foot-and-mouth disease model in a spatially heterogeneous environment. Acta Math Sci, 2021, 41(2): 552-572 [14] Yang J, Gong M, Sun G.Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneous environment. J Differential Equations, 2023, 377: 71-112 [15] Webb G F.Theory of Nonlinear Age-Dependent Population Dynamics. New York: Marcel Dekker Inc, 1985 [16] Inaba H.Age-Structured Population Dynamics in Demography and Epidemiology. Singapore: Springer, 2017 [17] Olsen H, Holden H.The Kolmogorov-Reisz compactness theorem. Expo Math, 2010, 28(4): 385-394 [18] Gaecia-Melián J, Rossi J D.On the principal eigenvalue of some nonlocal diffusion problems. J Differential Equations, 2009, 246(1): 21-38 [19] Burton T A.A fixed-point theorem of Krasnoselskii. Appl Math Lett, 1998, 11(1): 85-88 |