[1] Aubin J P. Set-Valued Analysis. Boston: Birkhäuser, 1999 [2] Auslender A, Teboulle M.Asymptotic Cones and Functions in Optimization and Variational Inequalities. New York: Springer-Verlag, 2003 [3] Aussel D, Daniillids A, Thibault L.Subsmooth sets: functional characterizations and related concepts. Trans Amer Math Soc, 2005, 357(4): 1275-1301 [4] Azé D, Corvellec J N.Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim Calc Var, 2004, 10(3): 409-425 [5] Azé D, Corvellec J N.On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J Optim, 2002, 12(4): 913-927 [6] Beck A, Teboulle M.Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems. Optim Methods Softw, 2003, 18(4): 377-394 [7] Bolte J, Nguyen T P, Peypouquet J, Suter B.From error bounds to the complexity of first-order descent methods for convex functions. Math Program, 2017, 165(2): 471-507 [8] Burke J V, Deng S. Weak sharp minima revisited, part II: application to linear regularity and error bounds. Math Program, 2005, 104: 235-261 [9] Clarke F H.Optimization and Nonsmooth Analysis. New York: Wiley, 1990 [10] Dontchev A L, Rockafellar R T.Regularity and conditioning of solution mappings in variational analysis. Set-Valued Analysis, 2004, 12(1/2): 79-109 [11] Drusvyatskiy D, Ioffe A D, Lewis A S.Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria. Math Program, 2021, 185(2): 357-383 [12] Drusvyatskiy D, Ioffe A D, Lewis A S.Transversality and alternating projections for nonconvex sets. Found Comput Math, 2015, 15(6): 1637-1651 [13] Ekeland I.On the variational principle. J Math Anal Appl, 1974, 47(2): 324-353 [14] Hoffman A.On approximate solutions of systems of linear inequalities. Journal of Research of the National Bureau of Standards, Section B, Mathematical Sciences, 1952, 49(4): 263-265 [15] Ioffe A D.Metric regularity and subdifferential calculus. Russ Math Surv, 2000, 55(3): 501-558 [16] Kruger A Y, López M A, Théra M A.Perturbation of error bounds. Math Program, 2018, 168(2): 533-554 [17] Li M H, Meng K W, Yang X Q.On error bound moduli for locally Lipschitz and regular functions. Math Program, 2018, 171(1/2): 463-487 [18] Li G, Mordukhovich B S, Nghia T T A, Pham T S. Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates. Math Program, 2018, 168(1/2): 313-346 [19] Luo X D, Luo Z Q.Extension of Hoffman's error bound to polynomial systems. SIAM J Optim, 1994, 4(2): 383-392 [20] Luo Z Q, Tseng P.Perturbation analysis of a condition number for linear systems. SIAM J Matrix Anal Appl, 1994, 15(2): 636-660 [21] Mordukhovich B S.Variational Analysis and Generalized Differentiation I. Berlin: Springer-Verlag, 2006 [22] Ng K F, Zheng X Y.Characterization of error bounds for convex multifunctions on Banach spaces. Math Oper Res, 2004, 29(1): 45-63 [23] Ng K F, Zheng X Y.Error bounds for lower semicontinuous functions in normed spaces. SIAM J Optim, 2001, 12(1): 1-17 [24] Ngai H V, Kruger A, Théra M.Stability of error bounds for semi-infinite convex constraint systems. SIAM J Optim, 2010, 20(4): 2080-2096 [25] Ngai H V, Théra M.Error bounds for convex differentiable inequality systems in Banach spaces. Math Program, 2005, 104(2/3): 465-482 [26] Ngai H V, Théra M.Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math Program, 2009, 116(1/2): 397-427 [27] Pang J S.Error bounds in mathematical programming. Math Program, 1997, 79(1): 299-332 [28] Shapiro A.Existence and differentiability of metric projections in Hilbert spaces. SIAM J Optim, 1994, 4(1): 130-141 [29] Shapiro A, Al-Khayyal F.First-order conditions for isolated locally optimal solutions. J Optim Theory Appl, 1993, 77(1): 189-196 [30] Shen Z S, Yao J C, Zheng X Y.Calmness and the Abadie CQ for multifunctions and linear regularity for a collection of closed sets. SIAM J Optim, 2019, 29(3): 2291-2319 [31] Wu Z, Ye J J.On error bounds for lower semicontinuous functions. Math Program, 2002, 92(2): 301-314 [32] Zhang B B, Zheng X Y.Well-posedness and generalized metric subregularity with respect to an admissible function. Sci China Math, 2019, 62(4): 809-822 [33] Zheng X Y.Slater condition for tangent derivatives. Math Oper Res, 2022, 47(4): 3282-3303 [34] Zheng X Y, Ng K F.Calmness for L-subsmooth multifunctions in Banach spaces. SIAM J Optim, 2009, 19(4): 1648-1673 [35] Zheng X Y, Ng K F.Perturbation analysis of error bounds for systems of conic linear inequalities in Banach spaces. SIAM J Optim, 2005, 15(4): 1026-1041 [36] Zheng X Y, Ng K F. Stability of error bounds for conic subsmooth inequalities. ESAIM Control Optim Calc Var, 2019, 25}: Article 55 [37] Zheng X Y, Wei Z.Perturbation analysis of error bounds for quasi-subsmooth inequalities and semi-infinite constraint systems. SIAM J Optim, 2012, 22(1): 41-65 [38] Zheng X Y, Zhu J X.Generalized metric subregularity and regularity with respect to an admissible function. SIAM J Optim, 2016, 26(1): 535-563 |