数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1689-1702.

• • 上一篇    

有限理性下广义多目标多主多从博弈受控系统解的稳定性

张咏雪1,2(),贾文生1,2,*()   

  1. 1贵州大学数学与统计学院 贵阳 550025
    2贵州省博弈决策与控制系统重点实验室 贵阳 550025
  • 收稿日期:2024-02-26 修回日期:2024-06-26 出版日期:2024-12-26 发布日期:2024-11-22
  • 通讯作者: *贾文生, Email: wsjia@gzu.edu.cn
  • 作者简介:张咏雪, Email: yxzhang8126@163.com
  • 基金资助:
    国家自然科学基金(12061020);贵州省优秀青年科技人才项目基金(20215640)

Stability of Solutions for Controlled Systems of Generalized Multiobjective Multi-Leader-Follower Games Under Bounded Rationality

Zhang Yongxue1,2(),Jia Wensheng1,2,*()   

  1. 1School of Mathematics and Statistics, Guizhou University, Guiyang 550025
    2Guizhou Provincal Key Laboratory of Game Decision and Control System, Guizhou University, Guiyang 550025
  • Received:2024-02-26 Revised:2024-06-26 Online:2024-12-26 Published:2024-11-22
  • Supported by:
    NSFC(12061020);Science and Technology Foundation of Guizhou Province(20215640)

摘要:

该文在有限理性条件下, 构建了一类新的广义多目标多主多从博弈受控系统, 并给出了该博弈受控系统解的存在性条件. 进一步, 利用非线性标量化方法构造了适当的理性函数, 并证明了该模型是结构稳定的, 同时对 $\varepsilon$-平衡也是鲁棒的, 即在 Baire 分类意义下, 大多数广义多目标多主多从博弈受控系统问题都是稳定的, 表明在一定条件下该模型的精确解可用有限理性条件下的近似解逼近.

关键词: 广义多目标多主多从博弈受控系统, 有限理性, 结构稳定性, 鲁棒性

Abstract:

In this paper, the stability of solutions for controlled systems of generalized multiobjective multi-leader-follower games is studied under the framework of bounded rationality. We construct an appropriate rational function by the nonlinear scalarization method, and prove that the model is structurally stable and robust to $\varepsilon$-equilibrium. This means that most of the problems for controlled systems of generalized multiobjective multi-leader-follower games are stable on the meaning of Baire category, and also shows that, under certain conditions, the problem model can be approximated to complete rationality by bounded rationality.

Key words: Controlled systems of generalized multiobjective multi-leader-follower games, Bounded rationality, Structural stability, Robustness

中图分类号: 

  • O225