[1] |
Hirota R. Exact solution of the Korteweg-de vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27(18): 1192-1194
|
[2] |
Staruszkiewicz A. A nonlinear modification of the Schrödinger equation. Acta Phys Pol B, 1983, 14(12): 907-909
|
[3] |
Wazwaz A M. Painlevé analysis for new (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equations with constant and time-dependent coefficients. Int J Numer Methods Heat Fluid Flow, 2020, 30(9): 4259-4266
|
[4] |
Zhao Z H, Dai Z D, Wang C J. Extend three-wave method for the (1+2)-dimensional Ito equation. Appl Math Comput, 2010, 217(5): 2295-2300
|
[5] |
Wazwaz A M. Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn, 2022, 109(3): 1929-1934
|
[6] |
Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379(36): 1975-1978
|
[7] |
Chen S J, Lü X. Lump and lump-multi-kink solutions in the (3+1)-dimensions. Commun Nonlinear Sci Numer Simul, 2022, 109: 106103
|
[8] |
Seadawy A R, Ahmed S, Rizvi S T, Ali K. Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics. J Geom Phys, 2022, 176: 104507
|
[9] |
Tan W, Dai Z D, Yin Z Y. Dynamics of multi-breathers, N-solitons and M-lump solutions in the (2+1)-dimensional KdV equation. Nonlinear Dyn, 2019, 96(2): 1605-1614
|
[10] |
Wang H, Wang Y. Breather waves, rogue waves and complexiton solutions for a Zakharov-Kuznetsov equation. J Geom Phys, 2021, 167: 104286
|
[11] |
Li L X. Degeneration of solitons for a (3+1)-dimensional generalized nonlinear evolution equation for shallow water waves. Nonlinear Dyn, 2022, 108(2): 1627-1640
|
[12] |
Zhao Z L, He L C. M-lump,high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation. Nonlinear Dyn, 2020, 100(3): 2753-2765
|
[13] |
Li L X, Dai Z D, Cheng B T. Degeneration of N-soliton solutions for a (3+1)-dimensional nonlinear model in shallow water waves. Nonlinear Dyn, 2023, 111(2): 1667-1683
|
[14] |
Zhou X, Ilhan O A, Manafian J, et al. N-lump and interaction solutions of localized waves to the (2+1)-dimensional generalized KDKK equation. J Geom Phys, 2021, 168: 104312
|
[15] |
Hirota R. Exact envelope-soliton solutions of a nonlinear wave equation. J Math Phys, 1973, 14(7): 805-809
|
[16] |
Cui J Y, Li D L, Zhang T F. Symmetry reduction and exact solutions of the (3+1)-dimensional nKdV-nCBS equation. Appl Math Lett, 2023, 144: 108718
|
[17] |
Ma W X. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt Quant Electron, 2020, 52(12): Article 511
|
[18] |
Zhao X, Tian B, Du X X, et al. Bilinear Bäcklund transformation, kink and breather-wave solutions for a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation in fluid mechanics. Eur Phys J Plus, 2021, 136(2): 1-9
|
[19] |
Chen X, Guo Y F, Zhang T F. Some new kink type solutions for the new (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dyn, 2023, 111(1): 683-695
|
[20] |
Sulaiman T A, Yusuf A, Abdeljabbar A, Alquran M. Dynamics of lump collision phenomena to the (3+1)-dimensional nonlinear evolution equation. J Geom Phys, 2021, 169: 104347
|
[21] |
Guo Y F, Dai Z D, Guo C X. Lump solutions and interaction solutions for (2+1)-dimensional KPI equation. Front Math China, 2022, 17(5): 875-886
|
[22] |
Ma H C, Chen Q X, Deng A P. Soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Commun Theor Phys, 2020, 72(9): 095001
|
[23] |
Zhang W J, Xia T C. Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation. Phys Scr, 2020, 95(4): 045217
|
[24] |
Wazwaz A M, Alatawi N S, Albalawi W, El-Tantawy S A. Painlevé analysis for a new (3+1)-dimensional KP equation: Multiple-soliton and lump solutions. Euro Phys Lett, 2022, 140(5): 52002
|
[25] |
Ahmad S, Khan S A, Hadi F. Damped Kadomtsev-Petviashvili equation for weakly dissipative solitons in dense relativistic degenerate plasmas. Commun Theor Phys, 2017, 68(6): 783
|
[26] |
Fogaca D A, Navarra F S, Ferreira Filho L G. Kadomtsev-Petviashvili equation in relativistic fluid dynamics. Commun Nonlinear Sci Numer Simul, 2013, 18(2): 221-235
|
[27] |
Ma W X, Batwa S, Manukure S. Dispersion-managed lump waves in a spatial symmetric KP model. E Asian J Appl Math, 2023, 13(2): 246-256
|
[28] |
Ma W X. Lump waves in a spatial symmetric nonlinear dispersive wave model in (2+1)-dimensions. Mathematics, 2023, 11(22): 4664
|
[29] |
Wang H. Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl Math Lett, 2018, 85: 27-34
|
[30] |
Ma W X. A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. Mod Phys Lett B, 2022, 36(20): 2250094
|
[31] |
Ma W X. Linear superposition of Wronskian rational solutions to the KdV equation. Commun Theor Phys, 2021, 73(6): 065001
|
[32] |
Ma W X. Four-component integrable hierarchies of Hamiltonian equations with ($ m+n+2 $)th-order Lax pairs. Theor Math Phys, 2023, 216(2): 1180-1188
|
[33] |
Ma W X. Novel Liouville integrable Hamiltonian models with six components and three signs. Chin J Phys, 2023, 86: 292-299
|