1 |
Cooper D , Pignataro T . On the shape of Cantor sets. J Differential Geom, 1988, 28, 203- 221
|
2 |
Falconer K J , Marsh D T . On the Lipschitz equivalence of Cantor sets. Mathematika, 1992, 39, 223- 233
doi: 10.1112/S0025579300014959
|
3 |
Falconer K J , Marsh D T . Classification of quasi-circles by Huasdorff dimension. Nonlinearity, 1992, 2, 489- 493
|
4 |
David G , Semmes S . Fractured Fractals and Broken Dreams: Self-Similar Geometry Through Metric and Measure. Oxford: Clarendon Press, 1997
|
5 |
Falconer K J . Fractal Geometry: Mathematical Foundation and Applications. New York: John Wiley & Sons, 1990
|
6 |
Rao H , Ruan H J , Wang Y . Lipschitz equivalence of Cantor sets and algebraic properties of contraction ratios. Trans Amer Math Soc, 2012, 364, 1109- 1126
doi: 10.1090/S0002-9947-2011-05327-4
|
7 |
Xi L F, Xiong Y. Lipschitz equivalence class, ideal class and the Gauss class number problem. 2013, arXiv: 1304.0103
|
8 |
Fan A H , Rao H , Zhang Y . Higher dimensional Frobenius problem: Maximal saturated cone, growth function and rigidity. J Math Pures Appl, 2015, 104, 533- 560
doi: 10.1016/j.matpur.2015.03.007
|
9 |
Rao H , Zhang Y . Higher dimensional Frobenius problem and Lipschitz equivalence of Cantor sets. J Math Pures Appl, 2015, 104, 868- 881
doi: 10.1016/j.matpur.2015.05.006
|
10 |
Rao H , Ruan H J , Xi L F . Lipschitz equivalence of self-similar sets. Comptes Rendus Mathematique, 2006, 342, 191- 196
doi: 10.1016/j.crma.2005.12.016
|
11 |
Xi L F , Xiong Y . Self-similar sets with initial cubic patterns. Comptes Rendus Mathematique, 2010, 348, 15- 20
doi: 10.1016/j.crma.2009.12.006
|
12 |
Xi L F , Xiong Y . Lipschitz equivalence of fractals generated by nested cubes. Math Z, 2012, 271, 1287- 1308
doi: 10.1007/s00209-011-0916-5
|
13 |
Li B M , Li W X , Miao J J . Lipschtiz equivalence of Mcmullen sets. Fractals, 2013, 21, 3- 11
|
14 |
Ruan H J , Wang Y , Xi L F . Lipschitz equivalence of self-similar sets with touching structures. Nonlinearity, 2014, 27, 1299- 1321
doi: 10.1088/0951-7715/27/6/1299
|
15 |
Rao H, Zhu Y J. Lipschitz equivalence of fractal squares and finite state automation. 2016, arXiv: 1609.04271
|
16 |
Ruan H J , Wang Y . Topological invariants and Lipschitz equivalence of fractal squares. Journal of Mathematical Analysis and Applications, 2017, 451 (1): 327- 344
doi: 10.1016/j.jmaa.2017.02.012
|
17 |
饶峰, 王小华, 朱云颉. 一对分形方块的利普希茨等价. 中国科学, 2018, 48, 363- 372
|
|
Rao F , Wang X H , Zhu Y J . Lipschitz equivalence of a pair fractal squares. Sci Sin Math, 2018, 48, 363- 372
|
18 |
Zhu Y J , Yang Y M . Lipschitz equivalence of self-similar sets with two-state automation. J Math Anal Appl, 2018, 458 (1): 379- 392
doi: 10.1016/j.jmaa.2017.09.007
|
19 |
Bandt C , Mesing M . Self-affine fractals of finite type. Banach Center Publication, 2009, 84, 131- 148
|