数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 811-826.
收稿日期:
2020-07-01
出版日期:
2021-06-26
发布日期:
2021-06-09
作者简介:
仉志余, E-mail: 基金资助:
Received:
2020-07-01
Online:
2021-06-26
Published:
2021-06-09
Supported by:
摘要:
该文研究一类具有次线性中立项的二阶广义Emden-Fowler型时滞微分方程的振动性.利用Riccati变换和不等式技巧,在非正则条件下建立了该类方程较简便的多个新振动准则,所得准则推广和改进了近年来已有的包括适应于Euler方程的经典研究成果.最后,该文还构造实例验证了所得振动准则的广泛应用效果.
中图分类号:
仉志余. 具次线性中立项的二阶广义Emden-Fowler时滞微分方程的振动准则[J]. 数学物理学报, 2021, 41(3): 811-826.
Zhiyu Zhang. Oscillation Criteria of Second-Order Generalized Emden-Fowler Delay Differential Equations with a Sub-Linear Neutral Term[J]. Acta mathematica scientia,Series A, 2021, 41(3): 811-826.
1 |
Wong J S W . On the generalized Emden-Fowler equation. SIAM Rev, 1975, 17, 339- 360
doi: 10.1137/1017036 |
2 | Neslihan E T I. Classical and Quantum Euler Equation[D]. Izmir: Izmir Institute of Technology, 2007 |
3 |
Agarwal P R , Bohner M , Li T , et al. Oscillation of second-order Emden-Fowler neutral delay differential equations. Anali di Matematica, 2014, 193, 1861- 1875
doi: 10.1007/s10231-013-0361-7 |
4 | 仉志余, 宋菲菲, 俞元洪. 显含阻尼项的二阶非线性中立型Emden-Fowler微分方程的振动性和渐近性. 应用数学, 2020, 33 (3): 770- 781 |
Zhang Z Y , Song F F , Yu Y H . Oscillation and asymptotic behavior for second order nonlinear neutral Emden-Fowler differential equations with explicit damping. Mathematica Applicata, 2020, 33 (3): 770- 781 | |
5 |
Sun Y G , Meng F W . Note on the paper of Džurina and Stavroulakis. Applied Mathematics and Computation, 2006, 174, 1634- 1641
doi: 10.1016/j.amc.2005.07.008 |
6 |
Ye L H , Xu Z T . Oscillation criteria for second order quasilinear neutral delay differential equations. Applied Mathematics and Computation, 2009, 207, 388- 396
doi: 10.1016/j.amc.2008.10.051 |
7 |
Džurina J , Jadlovská I . A note on oscillation of second-order delay differential equations. Applied Mathematics Letters, 2017, 69, 126- 132
doi: 10.1016/j.aml.2017.02.003 |
8 | Bohner M , Grace S R , Jadlovská I . Oscillation criteria for second-order neutral delay differential equations. Electronic Journal of Qualitative Theory of Differential Equations, 2017, (60): 1- 12 |
9 | Agarwal R P , Zhang C , Li T . Some remarks on oscillation of second order neutral differential equations. Appl Math Comput, 2016, 274, 178- 181 |
10 | Han Z , Li T , Sun S , et al. Remarks on the paper[Appl. Math. Comput. 207(2009) 388-396]. Appl Math Comput, 2010, 215, 3995- 4007 |
11 |
Li H , Zhao Y , Han Z . New oscillation criterion for Emden-Fowler type nonlinear neutral delay differential equations. J Appl Math Computing, 2019, 60, 191- 200
doi: 10.1007/s12190-018-1208-6 |
12 | 罗红英, 屈英, 俞元洪. 具有正负系数的二阶中立型时滞Emden-Fowler方程的振动准则. 应用数学学报, 2017, 40 (5): 667- 673 |
Luo H , Qu Y , Yu Y . Oscillation criteria of second order neutral delay Emden-Fowler equations with positive and negative coefficients. Acta Math Appl Sinica, 2017, 40 (5): 667- 675 | |
13 | 仉志余, 俞元洪, 李淑萍等. 二阶非线性中立型时滞微分方程的振动性. 数学物理学报, 2019, 39A(4): 797-811 |
Zhang Z, Yu Y, Li S, Qiao S. Oscillation of second order nonlinear differential equations with neutral delay. Acta Math Sci, 2019, 39A(4): 797-811 | |
14 |
Agarwal R P , Bohner M , Li T , Zhang C . Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J Math, 2014, 30 (1): 1- 6
doi: 10.37193/CJM.2014.01.01 |
15 |
Tamilvanan S , Thandapani E , Grace S R . Oscillation theorems for second-order non-linear differential equation with a non-linear neutral term. Int J Dynamical Systems and Differential Equations, 2017, 7 (4): 316- 327
doi: 10.1504/IJDSDE.2017.087501 |
16 | Tamilvanan S , Thandapani E , Džurina J . Oscillation of second order nonlinear differential equation with sub-linear neutral term. Differ Equ Appl, 2017, 9 (1): 29- 35 |
17 |
Gracea S R , Graef J R . Oscillatory behavior of second order nonlinear differential equations with a sublinear neutral term. Mathematical Modelling and Analysis, 2018, 23 (2): 217- 226
doi: 10.3846/mma.2018.014 |
18 |
张晓建. 具非线性中立项的广义Emden-Fowler微分方程的振动性. 数学物理学报, 2018, 38A (4): 728- 739
doi: 10.3969/j.issn.1003-3998.2018.04.011 |
Zhang X . Oscillation of generalized Emden-Fowler differential equations with nonlinear neutral term. Acta Math Sci, 2018, 38A (4): 728- 739
doi: 10.3969/j.issn.1003-3998.2018.04.011 |
|
19 | 杨甲山, 覃桂茳, 覃学文, 赵春茹. 一类二阶Emden-Fowler型微分方程的若干振动条件. 浙江大学学报(理科版), 2019, 46 (3): 302- 308 |
Yang J , Qin G , Qin X , Zhao C . New oscillatory conditions of a class of the second-order Emden-Fowler differential equations. J Zhejiang University(Science Edition), 2019, 46 (3): 302- 308 | |
20 | 于强. 一类二阶广义Emden-Fowler型微分方程的振动性. 数学的实践与认识, 2019, 49 (19): 321- 328 |
Yu Q . Oscillation for a class of second-order generalized Emden-Fowler-type functional differential equations. Mathematics in Practice and Theory, 2019, 49 (19): 321- 328 | |
21 |
Sudha1 B , Tamilvanan S , Rama R , et al. Oscillation criteria of second order delay differential equations with nonpositive sublinear neutral term. AIP Conference Proceedings, 2019, 2112 (1): 020167
doi: 10.1063/1.5112352 |
22 |
Prabaharan N , Dharuman C . Oscillation of second order Euler type differential equations with multiple sub-linear neutral terms. AIP Conference Proceedings, 2019, 2112 (1): 020138
doi: 10.1063/1.5112323 |
23 |
Ganesan V , Kumar M S . Oscillation of a third order nonlinear differential equations with neutral type. URAL Mathematical Journal, 2017, 3 (2): 122- 129
doi: 10.15826/umj.2017.2.013 |
24 | Ganesan V , Kumar M S . Oscillation theorems for third-order retarded differential equations with a sublinear neutral term. International Journal of Pure and Applied Mathematics, 2017, 114 (5): 63- 70 |
[1] | 邱仰聪,王其如. 二阶非线性中立型时标动态方程趋向于零的非振动解的存在性[J]. 数学物理学报, 2021, 41(2): 382-387. |
[2] | 迟晓妮,曾荣,刘三阳,朱志斌. 对称锥权互补问题的正则化非单调非精确光滑牛顿法[J]. 数学物理学报, 2021, 41(2): 507-522. |
[3] | 张萍,杨甲山. 时标上具非正中立项的二阶动力方程的动力学性质[J]. 数学物理学报, 2021, 41(1): 217-226. |
[4] | 仉志余,宋菲菲,李同兴,俞元洪. 带阻尼项的二阶非线性中立型Emden-Fowler微分方程的振动准则[J]. 数学物理学报, 2020, 40(4): 934-946. |
[5] | 赵中建,陈绍春. 一个二阶椭圆混合问题的三棱柱元[J]. 数学物理学报, 2020, 40(3): 684-693. |
[6] | 李继猛,杨甲山. 具非线性中立项的二阶延迟微分方程的Philos型准则[J]. 数学物理学报, 2020, 40(1): 169-186. |
[7] | 张建玲. 多总体二阶随机占优对无约束的检验问题[J]. 数学物理学报, 2020, 40(1): 212-220. |
[8] | 李继猛. 二阶广义Emden-Fowler型延迟微分方程的振荡性分析[J]. 数学物理学报, 2019, 39(5): 1041-1054. |
[9] | 仉志余,俞元洪,李淑萍,乔士柱. 二阶非线性中立型时滞微分方程的振动性[J]. 数学物理学报, 2019, 39(4): 797-811. |
[10] | 李文娟,李书海,俞元洪. 非线性二阶中立型分布时滞微分方程的振动性[J]. 数学物理学报, 2019, 39(4): 812-822. |
[11] | 王琼,龙芳,王珺. 关于差分Riccati方程及时滞微分方程的相关结果[J]. 数学物理学报, 2019, 39(4): 832-838. |
[12] | 范英飞, 章国鹏, 江欣国, 马剑. 一类二阶中立随机偏微分方程的吸引集和拟不变集[J]. 数学物理学报, 2018, 38(6): 1135-1143. |
[13] | 张晓建. 具非线性中立项的广义Emden-Fowler微分方程的振动性[J]. 数学物理学报, 2018, 38(4): 728-739. |
[14] | 刘功伟, 刁林. 具记忆和变时滞项的二阶发展方程能量衰减率的凸性估计[J]. 数学物理学报, 2018, 38(3): 527-542. |
[15] | 李文娟, 汤获, 俞元洪. 中立型Emden-Fowler微分方程的振动性[J]. 数学物理学报, 2017, 37(6): 1062-1069. |
|