数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 629-641.
收稿日期:
2020-06-11
出版日期:
2021-06-26
发布日期:
2021-06-09
通讯作者:
吴星
E-mail:yuyanghai214@sina.com;lijinlu@gnnu.cn;ny2008wx@163.com
作者简介:
于洋海, E-mail: 基金资助:
Yanghai Yu1(),Jinlu Li2,3(),Xing Wu4,*()
Received:
2020-06-11
Online:
2021-06-26
Published:
2021-06-09
Contact:
Xing Wu
E-mail:yuyanghai214@sina.com;lijinlu@gnnu.cn;ny2008wx@163.com
Supported by:
摘要:
该文研究
中图分类号:
于洋海,李金禄,吴星. 三维Navier-Stokes-Korteweg方程组的整体大解[J]. 数学物理学报, 2021, 41(3): 629-641.
Yanghai Yu,Jinlu Li,Xing Wu. A Class of Global Large Solutions to 3D Navier-Stokes-Korteweg Equations[J]. Acta mathematica scientia,Series A, 2021, 41(3): 629-641.
1 |
Bresch D , Desjardins B , Lin C . On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commmun Part Diffe Equ, 2003, 28, 843- 868
doi: 10.1081/PDE-120020499 |
2 | Cahn J , Hilliard J . Free energy of a nonuniform system, I. Interfacial free energy. J Chem Phys, 1998, 28, 258- 267 |
3 |
Dunn J , Serrin J . On the thermomechanics of interstitial working. Arch Ration Mech Anal, 1985, 88, 95- 133
doi: 10.1007/BF00250907 |
4 |
Danchin R , Muchab P . Compressible Navier-Stokes system: Large solutions and incompressible limit. Adv Math, 2017, 320, 904- 925
doi: 10.1016/j.aim.2017.09.025 |
5 |
Fang D , Zhang T , Zi R . Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data. SIAM J Math Anal, 2018, 50 (5): 4983- 5026
doi: 10.1137/17M1122062 |
6 |
Gurtin M , Poligone D , Vinals J . Two-phases binary fluids and immiscible fluids described by an order parameter. Math Models Methods Appl Sci, 1996, 6, 815- 831
doi: 10.1142/S0218202596000341 |
7 |
Hattori H , Li D . Solutions for two-dimensional system for materials of Korteweg type. SIAM J Math Anal, 1994, 25, 85- 98
doi: 10.1137/S003614109223413X |
8 |
Hattori H , Li D . Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198, 84- 97
doi: 10.1006/jmaa.1996.0069 |
9 |
Haspot B . Existence of global strong solution for Korteweg system with large infinite energy initial data. J Math Anal Appl, 2016, 438, 395- 443
doi: 10.1016/j.jmaa.2016.01.047 |
10 |
Haspot B . Global strong solution for the Korteweg system with quantum pressure in dimension N ≥ 2. Math Ann, 2017, 367, 667- 700
doi: 10.1007/s00208-016-1391-4 |
11 |
Haspot B . Global existence of strong solution for viscous shallow water system with large initial data on the irrotational part. J Differ Equ, 2017, 262, 4931- 4978
doi: 10.1016/j.jde.2017.01.010 |
12 |
Haspot B . Existence of global weak solution for compressible fluid models of Korteweg type. J Math Fluid Mech, 2011, 13, 223- 249
doi: 10.1007/s00021-009-0013-2 |
13 | Hoff D . Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303 (1): 169- 181 |
14 |
Hoff D . Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data. J Differ Equ, 1995, 120, 215- 254
doi: 10.1006/jdeq.1995.1111 |
15 |
Hoff D . Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch Ration Mech Anal, 1995, 132, 1- 14
doi: 10.1007/BF00390346 |
16 |
Hoff D . Discontinuous solutions of the Navier-Stokes equations for multidimensional heat-conducting flow. Arch Ration Mech Anal, 1997, 139, 303- 354
doi: 10.1007/s002050050055 |
17 |
Huang X , Li J . Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data. J Math Pures Appl, 2016, 106, 123- 154
doi: 10.1016/j.matpur.2016.02.003 |
18 |
Jiu Q , Wan Y , Xin Z . Global classical solution to two-dimensional compressible Navier-Stokes equations with large data in $ \mathbb{R}.2$. Phys D, 2018, 376/377, 180- 194
doi: 10.1016/j.physd.2017.12.006 |
19 |
Jüngel A . Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42, 1025- 1045
doi: 10.1137/090776068 |
20 |
Kotschote M . Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincaré Anal Nonlinéaire, 2008, 25, 679- 696
doi: 10.1016/j.anihpc.2007.03.005 |
21 |
Kazhikhov A , Shelukhin V . Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41 (2): 273- 282
doi: 10.1016/0021-8928(77)90011-9 |
22 |
Lei Z , Lin F , Zhou Y . Structure of helicity and global solutions of incompressible Navier-Stokes equation. Arch Ration Mech Anal, 2015, 218, 1417- 1430
doi: 10.1007/s00205-015-0884-8 |
23 |
Li J , Yu Y , Zhu W . A class large solution of the 3D Hall-magnetohydrodynamic equations. J Differ Equ, 2020, 268, 5811- 5822
doi: 10.1016/j.jde.2019.11.020 |
24 | Mellet A , Vasseur A . Existence and uniqueness of global strong solutions for one dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2007, 39 (4): 1344- 1365 |
25 | Majda A , Bertozzi A . Vorticity and Incompressible Flow. Cambridge: Cambridge University Press, 2001 |
26 | Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 20(1): 67-104 |
27 |
Perepelitsa M . On the global existence of weak solutions for the Navier-Stokes equations of compressible fluid flows. SIAM J Math Anal, 2006, 38 (4): 1126- 1153
doi: 10.1137/040619119 |
28 | Serre D . Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C R Acad Sci Paris Sér I Math, 1986, 303 (13): 639- 642 |
29 | Serre D . Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris Sér I Math, 1986, 303 (14): 703- 706 |
30 | Triebel H . Theory of Function Spaces. Basel: Birkhäuser, 1983 |
31 |
Vaigant V , Kazhikhov A . On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. J Sib Math, 1995, 36 (6): 1283- 1316
doi: 10.1007/BF02106835 |
32 |
Tan Z , Wang Y . Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in $ \mathbb{R}.3$. Commun Math Sci, 2012, 10 (4): 1207- 1223
doi: 10.4310/CMS.2012.v10.n4.a9 |
[1] | 凌兴乾,张卫国. 广义对称正则长波方程的孤波解和周期波解及它们与Hamilton能量的关系[J]. 数学物理学报, 2021, 41(3): 603-628. |
[2] | 郭尚喜. 一维可压缩Navier-Stokes方程初值问题强解的整体存在性[J]. 数学物理学报, 2021, 41(3): 642-651. |
[3] | 成艺群, 滕凯民. 非线性临界Kirchhoff型问题的正基态解[J]. 数学物理学报, 2021, 41(3): 666-685. |
[4] | 鲁世平, 周诗乐, 余星辰. 具有不确定奇性的Liénard方程周期正解的存在性[J]. 数学物理学报, 2021, 41(3): 686-701. |
[5] | 杨先勇, 唐先华, 顾光泽. 带有临界增长或超临界增长的分数阶Choquard方程解的存在性和多重性[J]. 数学物理学报, 2021, 41(3): 702-722. |
[6] | 贾小尧, 娄振洛. Hénon型椭圆系统多个非径向对称解的存在性[J]. 数学物理学报, 2021, 41(3): 723-728. |
[7] | 钟澎洪, 陈兴发. Landau-Lifshitz方程平面波解的全局光滑性[J]. 数学物理学报, 2021, 41(3): 729-739. |
[8] | 吴斌, 陈群. 一类耦合Korteweg-de Vries方程组输运系数反演问题的Lipschitz稳定性[J]. 数学物理学报, 2021, 41(3): 740-761. |
[9] | 谢倩倩, 翟小平, 董柏青. N维不可压无阻尼Oldroyd-B模型的最优衰减[J]. 数学物理学报, 2021, 41(3): 762-769. |
[10] | DestaLeta Temesgen,刘文军,丁建. 相对论简并量子等离子体中完全非线性重离子声波行波解的动力学研究[J]. 数学物理学报, 2021, 41(2): 496-506. |
[11] | 李泓桥. 半空间上Hartree方程的Liouville型定理[J]. 数学物理学报, 2021, 41(2): 388-401. |
[12] | 彭小明,郑筱筱,尚亚东. 具有非线性阻尼的Navier-Stokes-Voigt方程的拉回吸引子[J]. 数学物理学报, 2021, 41(2): 357-369. |
[13] | 陈卿. 可压Navier-Stokes方程解的最高阶导的最佳衰减估计[J]. 数学物理学报, 2021, 41(2): 345-356. |
[14] | 郭连红. 关于Boussinesq方程组无粘极限的研究[J]. 数学物理学报, 2021, 41(1): 91-99. |
[15] | 王娟,赵杰. 振荡Robin混合边值齐次化问题[J]. 数学物理学报, 2021, 41(1): 81-90. |
|