数学物理学报 ›› 2019, Vol. 39 ›› Issue (5): 1158-1169.
收稿日期:
2018-01-30
出版日期:
2019-10-26
发布日期:
2019-11-08
作者简介:
梁聪刚, E-mail:基金资助:
Conggang Liang1(),Xiaoxia Yang1(
),Dongyang Shi2(
)
Received:
2018-01-30
Online:
2019-10-26
Published:
2019-11-08
Supported by:
摘要:
该文利用Wilson元对一类抛物积分微分方程提出了新的半离散和全离散逼近格式.基于单元的性质,通过定义新的双线性型,在不需要外推和插值后处理技术的前提下,分别得到了比传统的H1-范数更大的模意义下相应的O(h2)阶和O(h2+τ)阶的误差分析结果,比通常的关于Wilson元的误差估计高出一阶.这里,h,τ分别表示空间剖分参数和时间步长.最后,给出了一个数值算例,计算结果验证了理论分析的正确性.
中图分类号:
梁聪刚,杨晓侠,石东洋. 抛物积分微分方程的Wilson元收敛性分析[J]. 数学物理学报, 2019, 39(5): 1158-1169.
Conggang Liang,Xiaoxia Yang,Dongyang Shi. Convergence Analysis of Wilson Element for Parabolic Integro-Differential Equation[J]. Acta mathematica scientia,Series A, 2019, 39(5): 1158-1169.
1 | 林群, 严宁宁. 高效有限元构造与分析. 保定: 河北大学出版社, 1996 |
Lin Q , Yan N N . High Efficient Finite Element Structure and Analysis. Baoding: Hebei University Press, 1996 | |
2 |
孟晓然, 石东洋. 抛物积分微分方程非协调类Wilson元的整体超收敛和外推. 数学杂志, 2013, 33 (2): 301- 308
doi: 10.3969/j.issn.0255-7797.2013.02.013 |
Meng X R , Shi D Y . Global superconvergence and extrapolation of quasi-wilson element solution to integro-differential of parabolic equations. Journal of Mathematics, 2013, 33 (2): 301- 308
doi: 10.3969/j.issn.0255-7797.2013.02.013 |
|
3 |
Chen C , Thomée V , Wahlbin L B . Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Mathematics of Computation, 1992, 58 (198): 587- 602
doi: 10.1090/S0025-5718-1992-1122059-2 |
4 |
石东洋, 王海红. 抛物型积分微分方程各向异性非协调有限元分析. 工程数学学报, 2009, 26 (2): 209- 218
doi: 10.3969/j.issn.1005-3085.2009.02.003 |
Shi D Y , Wang H H . Anisotropic nonconforming finite element analysis for integro-diferential equations of parabolic type. Chinese Journal of Engineering Mathematics, 2009, 26 (2): 209- 218
doi: 10.3969/j.issn.1005-3085.2009.02.003 |
|
5 | 孙淑珍, 石翔宇. 抛物型积分微分方程双线性元方法的新估计. 郑州大学学报(理学版), 2016, 48 (4): 6- 9 |
Sun S Z , Shi X Y . New error estimates of bilinear finite element method to parabolic type integro-differential equation. Journal of Zhengzhou University(Natural Science Edition), 2016, 48 (4): 6- 9 | |
6 | 石东洋, 郭城, 王海红. 带弱奇异核的抛物型积分微分方程的非协调有限元方法. 数学物理学报, 2010, 30A (3): 764- 775 |
Shi D Y , Guo C , Wang H H . Noneonofrming finite element method for integro-diferential equation of parabolie type with weakly singular kernel. Acta Mathematica Scientia, 2010, 30A (3): 764- 775 | |
7 |
樊明智, 王芬玲, 牛裕琪, 石东洋. 带弱奇异核非线性积分微分方程的有限元分析. 数学的实践与认识, 2012, 24 (12): 141- 149
doi: 10.3969/j.issn.1000-0984.2012.12.021 |
Fan M Z , Wang F L , Niu Y Q , Shi D Y . Finite element analysis of nonlinear integro differential equation with weakly singular kernel. Mathematics in Practice and Theory, 2012, 24 (12): 141- 149
doi: 10.3969/j.issn.1000-0984.2012.12.021 |
|
8 | 孙澎涛. 抛物型积分微分方程的非协调Wilson元方法. 数学物理学报, 1996, 16 (S1): 57- 65 |
Sun P T . Nonconforming wilson element method for parabolic integro differential equations. Acta Mathematica Scientia, 1996, 16 (S1): 57- 65 | |
9 |
王芬玲, 石东洋, 陈金环. 非线性抛物积分微分方程的类Wilson非协调元分析. 应用数学, 2012, 25 (4): 923- 935
doi: 10.3969/j.issn.1001-9847.2012.04.032 |
Wang F L , Shi D Y , Chen J H . Analysis of quasi-wilson nonconforming element for nonlinear parabolic integro-differential equation. Mathematica Applicata, 2012, 25 (4): 923- 935
doi: 10.3969/j.issn.1001-9847.2012.04.032 |
|
10 | 石东洋, 裴丽芳. 非线性抛物型积分微分方程非协调三角形Carey元的收敛性分析. 系统科学与数学, 2009, 29 (6): 854- 864 |
Shi D Y , Pei L F . Convergence analysis of the nonconforming triangular carey element for a kind of nonlinear parabolic integro-differential problems. Journal of System Science and Mathematical Science, 2009, 29 (6): 854- 864 | |
11 |
张铁. 抛物型积分-微分方程有限元近似的超收敛性质. 高等学校计算数学学报, 2001, 23 (3): 193- 201
doi: 10.3969/j.issn.1000-081X.2001.03.001 |
Zhang T . Superconvergence of finite element approximations to integro-differential equations of parabolic type. Numerical Mathematics A Journal of Chinese Universities, 2001, 23 (3): 193- 201
doi: 10.3969/j.issn.1000-081X.2001.03.001 |
|
12 | Shi D Y , Wang H H . An H1-Galerkin nonconforming mixed finite element method for integro-differential equation of parabolic type. Journal of Mathematical Research and Exposition, 2009, 29 (5): 871- 881 |
13 | 赵艳敏, 石东伟, 王芬玲. 抛物型积分微分方程新混合元格式的超逼近分析. 系统科学与数学, 2016, 36 (4): 591- 604 |
Zhao Y M , Shi D W , Wang F L . Superclose analysis of a new mixed finite element scheme for parabolic intergro-differential equations. Journal of System Science and Mathematical Science, 2016, 36 (4): 591- 604 | |
14 |
李秋红, 石东洋. 拟线性抛物型积分微分方程的一个新最低阶混合元格式. 数学的实践与认识, 2012, 42 (23): 272- 275
doi: 10.3969/j.issn.1000-0984.2012.23.037 |
Li Q H , Shi D Y . A new lowest order nonconforming mixed finite element formulation for quasi-linear integro-differential equation of parabolic type. Mathematics in Practice and Theory, 2012, 42 (23): 272- 275
doi: 10.3969/j.issn.1000-0984.2012.23.037 |
|
15 |
吴志勤, 石东洋. 抛物型积分微分方程的一个新低阶混合元格式. 安徽大学学报(自然科学版), 2012, 36 (6): 1- 4
doi: 10.3969/j.issn.1000-2162.2012.06.001 |
Wu Z Q , Shi D Y . A new low order nonconforming mixed finite element formulation for integro-differential equations of parabolic type. Journal of Anhui University(Natural Science Edition), 2012, 36 (6): 1- 4
doi: 10.3969/j.issn.1000-2162.2012.06.001 |
|
16 | 刁群, 毛凤梅. 伪抛物型积分微分方程一个新的混合有限元分析. 重庆师范大学学报(自然科学版), 2017, 34 (6): 78- 84 |
Diao Q , Mao F M . A new mixed finite element analysis for pseudo-parabolic intergo-differential equation. Journal of Chongqing Normal University (Natural Science), 2017, 34 (6): 78- 84 | |
17 |
Song S C , Sun M , Jiang L Y . A nonconforming scheme to solve the parabolic problem. Applied Mathematics and Computation, 2015, 265: 108- 119
doi: 10.1016/j.amc.2015.04.089 |
18 | 宋士仓, 苏恒迪, 雷蕾. Wilson元求解二阶椭圆问题的一种新格式. 高等学校计算数学学报, 2015, 37 (2): 156- 165 |
Song S C , Su H D , Lei L . A new scheme of wilson element for second-order elliptic problems. Numerical Mathematics A Journal of Chinese Universities, 2015, 37 (2): 156- 165 | |
19 | Douglas J , Dupont T . Interior penalty procedures for elliptic and parabolic galerkin methods. Lecture Notes in Physics, 1976, 58: 207- 216 |
20 |
Könnö J , Stenberg R . H(div)-conforming finite elements for the brinkman problem. Mathematical Models and Methods in Applied Sciences, 2011, 21 (11): 2227- 2248
doi: 10.1142/S0218202511005726 |
[1] | 章茜, 蔡光辉. WOD随机变量序列的完全收敛性和矩完全收敛性[J]. 数学物理学报, 2019, 39(5): 1183-1191. |
[2] | 章志华,陈平炎. ![]() |
[3] | 赵雅迪, 吴立飞, 杨晓忠, 孙淑珍. 时间分数阶慢扩散方程的一类有效差分方法[J]. 数学物理学报, 2018, 38(6): 1122-1134. |
[4] | 朱志锋,张绍义. 用概率距离研究非时齐马氏链的收敛性[J]. 数学物理学报, 2018, 38(5): 963-969. |
[5] | 杨轩, 阮小娥, 王彭. 时变切换信号驱动的线性连续切换系统的迭代学习控制收敛性分析[J]. 数学物理学报, 2018, 38(3): 599-612. |
[6] | 陈红斌, 甘四清, 徐大, 彭玉龙. 二维分数阶发展型方程的正式的二阶BDF交替方向隐式紧致差分格式[J]. 数学物理学报, 2017, 37(5): 976-992. |
[7] | 王学武. φ-半伪压缩算子对的Ishikawa型迭代程序的收敛性和稳定性[J]. 数学物理学报, 2017, 37(2): 248-256. |
[8] | 张厚超, 石东洋. 非线性四阶双曲方程低阶混合元方法的超收敛分析[J]. 数学物理学报, 2016, 36(4): 656-671. |
[9] | 李炜. END序列加权和的完全收敛性[J]. 数学物理学报, 2016, 36(3): 448-455. |
[10] | 李英毅, 张海斌, 高欢. 一类修正邻近梯度法及其收敛性[J]. 数学物理学报, 2015, 35(6): 1136-1145. |
[11] | 杨利琴, 邓方文. 非光滑有界凸域上全纯自映射的随机迭代[J]. 数学物理学报, 2015, 35(6): 1127-1135. |
[12] | 李炜. NOD序列Sung型加权和的完全收敛性[J]. 数学物理学报, 2015, 35(4): 729-737. |
[13] | 赵杰. 椭圆重复齐次化问题W01,p[J]. 数学物理学报, 2015, 35(3): 525-533. |
[14] | 万成高. 随机环境中马氏链函数加权和的极限定理[J]. 数学物理学报, 2015, 35(1): 163-171. |
[15] | 王芬玲, 石东洋. 非线性色散耗散波动方程双线性元的高精度分析[J]. 数学物理学报, 2014, 34(6): 1599-1610. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|