数学物理学报 ›› 2019, Vol. 39 ›› Issue (4): 894-908.

• 论文 • 上一篇    下一篇

一类非线性抛物方程H1-Galerkin混合有限元方法的高精度分析

王俊俊*(),杨晓侠   

  1. 平顶山学院数学与统计学院 河南平顶山 467000
  • 收稿日期:2018-02-28 出版日期:2019-08-26 发布日期:2019-09-11
  • 通讯作者: 王俊俊 E-mail:wjunjun8888@163.com
  • 基金资助:
    国家自然科学基金(11671369);平顶山学院博士启动基金(PXY-BSQD-2019001);平顶山学院培育基金(PXY-PYJJ-2019006);the NSFC(11671369);the Doctoral Starting Foundation of PingdingshanUniversity(PXY-BSQD-2019001);the University Cultivation Foundation of Pingdingshan(PXY-PYJJ-2019006)

Superconvergence Analysis of an H1-Galerkin Mixed Finite Element Method for Nonlinear Parabolic Equation

Junjun Wang*(),Xiaoxia Yang   

  1. School of Mathematics and Statistics, Pingdingshan University, Henan Pingdingshan 467000
  • Received:2018-02-28 Online:2019-08-26 Published:2019-09-11
  • Contact: Junjun Wang E-mail:wjunjun8888@163.com
  • Supported by:
    国家自然科学基金(11671369);平顶山学院博士启动基金(PXY-BSQD-2019001);平顶山学院培育基金(PXY-PYJJ-2019006);the NSFC(11671369);the Doctoral Starting Foundation of PingdingshanUniversity(PXY-BSQD-2019001);the University Cultivation Foundation of Pingdingshan(PXY-PYJJ-2019006)

摘要:

研究了非线性抛物方程的H1-Galerkin混合有限元方法.利用双线性元及零阶Raviart-Thomas元,在不提高原始解正则性的前提下,创新性的使用分裂技巧等讨论了半离散格式下和Euler全离散格式下的关于原始变量uH1(Ω)模及流量p=▽uH(div;Ω)模的超逼近性质.数值算例证明了理论的正确性.

关键词: 非线性抛物方程, H1-Galerkin混合有限元方法, 半离散格式和Euler全离散格式, 超逼近性质

Abstract:

Nonlinear parabolic equation is studied by H1-Galerkin mixed finite element method. The bilinear element and the zero-order Raviart-Thomas elements are utilized to discuss superclose properties of the original variable u in H1(Ω) and the flux p=▽u in H(div; Ω) under the semi-discrete scheme and Euler fully-discrete scheme. During the process, the splitting technique is used and the regularity of u and p are not improved. The numerical example confirm the theory.

Key words: Nonlinear parabolic equation, H1-Galerkin mixed finite element method, The semi-discrete scheme and Euler fully-discrete scheme, Superclose properties

中图分类号: 

  • O242.21