1 |
Ince E L . Ordinary Differential Equations. New York: Dover Publications, 1944
|
2 |
Hille E . Ordinary Differential Equations in the Complex Domain. New York: Dover Publications, 1997
|
3 |
Goncalves V J . Sur la formule de rodrigues. Portugaliae Math, 1943, 4: 52- 64
|
4 |
Erdelyi A . Higher Transcendental Functions (Volume 1). New York: MacGraw-Hill, 1953
|
5 |
Horner J M . A Note on the derivation of Rodrigues' formulae. The American Mathematical Monthly, 1963, 70 (1): 81- 82
doi: 10.2307/2312798
|
6 |
Horner J M . Generalizations of the formulas of Rodrigues and Schlafli. The American Mathematical Monthly, 1963, 71 (8): 870- 876
|
7 |
Koekoek R , Lesky P E , Swarttouw R F . Hypergeometric Orthogonal Polynomials and Their q-Analogues. Berlin: Springer-Verlag, 2010
|
8 |
Nikiforov A F, Urarov V B. Classical orthogonal polynomials of a discrete variable on non-uniform lattices. Akad Nauk SSSR Inst Prikl Mat, 1983, Preprint
|
9 |
Nikiforov A F , Uvarov V B . Special Functions of Mathematical Physics. A Unified Introduction with Applications. Basel: Birkhauser Verlag, 1988
|
10 |
Nikiforov A F , Suslov S K , Uvarov V B . Classical Orthogonal Polynomials of a Discrete Variable. Berlin: Springer-Verlag, 1991
|
11 |
Wang Z X , Guo D R . Special Functions. Singapore: World Scientific Publishing, 1989
|
12 |
Andrews G, Askey R. Classical Orthogonal Polynomials//Brezinski, Draux, et al. Polynomes Orthogonaux et Applications. Berlin-Heidelberg-New York: Springer-Verlag, 1985: 36-62
|
13 |
George E , Andrews G , Askey R , Roy R . Special Functions. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1999
|
14 |
Askey R , Wilson J . A set of orthogonal polynomials that generalize the Racah coefficients or 6j-symbols. SIAM J Math Anal, 1979, 10: 1008- 1016
doi: 10.1137/0510092
|
15 |
Askey R, Ismail R. Recurrence Relations, Continued Fractions and Orthogonal Polynomials//Mem Amer Math Soc. Providence, RI:Amer Math Soc, 1984, 49:300
|
16 |
Askey R, Wilson J. Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials//Mem Amer Math Soc Providence, RI: Amer Math Soc, 1985, 54: 319
|
17 |
Mourad E , Ismail R , Carl A . Contiguous relations, basic hypergeometric functions, and orthogonal polynomials (I). Journal of Mathematical Analysis and Applications, 1989, 141: 349- 372
doi: 10.1016/0022-247X(89)90182-0
|
18 |
Suslov S K . On the theory of difference analogues of special functions of hypergeometric type. Russian Math Surveys, 1989, 44 (2): 227- 278
doi: 10.1070/RM1989v044n02ABEH002045
|
19 |
Atakishiyev N M, Suslov S K. Difference Hypergeometric Functions//Progress in Approximation Theory. New York: Springer, 1992: 1-35
|
20 |
Atakishiyev N M , Rahman M , Suslov S K . On classical orthogonal polynomials. Constr Approx, 1995, 11 (2): 181- 226
doi: 10.1007/BF01203415
|
21 |
George G , Rahman R . Basic Hypergeometric Series (2nd edition). Cambridge: Cambridge University Press, 2004
|
22 |
Koornwinder T M. q-Special functions, a tutorial. 1994, arXiv: math/9403216
|
23 |
Area I , Godoy E , Ronveaux A , Zarzo A . Hypergeometric-type differential equations:second kind solutions and related integrals. J Comput Appl Math, 2003, 157 (1): 93- 106
doi: 10.1016/S0377-0427(03)00377-7
|
24 |
Robin R . On the Rodrigues formula solution of the hypergeometric-type differential equation. International Mathematical Forum, 2013, 8 (30): 1455- 1466
|
25 |
Alvarez-Nodarse R , Arvessu J . On the q-polynomials in the exponential lattice x(s)=c1qs + c3. Integral Transform Spec Funct, 1999, 8 (3/4): 299- 324
|
26 |
Alvarez-Nodarse R , Cardoso J . Recurrence relations for discrete hypergeometric functions. J Difference Equ Appl, 2005, 11 (9): 829- 850
doi: 10.1080/10236190500089846
|
27 |
Alvarez-Nodarse R , Cardoso J . On the properties of special functions on the linear-type lattices. Journal of Mathmatical Analysis Applications, 2011, 405 (3): 271- 285
|
28 |
Area I , Godoy E , Ronveaux A , Zarzo A . Hypergeometric type q-difference equations:Rodrigues type representation for the second kind solution. J Comput Appl Math, 2005, 173 (1): 81- 92
doi: 10.1016/j.cam.2004.02.018
|
29 |
Bangerezako G . Variational calculus on q-nonuniform lattices. J Math Anal Appl, 2005, 306 (2): 161- 179
|
30 |
Dreyfus T . q-deformation of meromorphic solutions of linear differential equations. J Differential Equations, 2015, 259 (11): 5734- 5768
doi: 10.1016/j.jde.2015.07.010
|
31 |
Kac V , Cheung P . Quantum Calculus. New York: Springer-Verlag, 2002
|
32 |
Jia L K , Cheng J F , Feng Z S . A q-analogue of Kummer's equation. Electron J Differential Equations, 2017, 31: 1- 20
|
33 |
Magnus A P. Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points//Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions, 1995, 65: 253-265
|
34 |
Foupouagnigni M . On difference equations for orthogonal polynomials on nonuniform lattices. J Difference Equ Appl, 2008, 14 (2): 127- 174
doi: 10.1080/10236190701536199
|
35 |
Foupouagnigni M , Koepf M , Kenfack-Nangho K , Mboutngam S . On solutions of holonomic divideddifference equations on nonuniform lattices. Axioms, 2013, 2 (3): 404- 434
doi: 10.3390/axioms2030404
|
36 |
Witte N S . Semi-classical orthogonal polynomial systems on non-uniform lattices, deformations of the Askey table and analogs of isomonodromy. Nagoya Math J, 2015, 219: 127- 234
doi: 10.1215/00277630-3140952
|