[1] 马知恩, 周义仓, 王稳地, 靳祯. 传染病动力学的数学建模与研究. 北京:科学出版社, 2003Ma Z E, Zhou Y C, Wang W D, Jin Z. The Mathematical Modelling and Study of Infectious Disease Dynamics. Beijing:Science Press, 2003 [2] 肖燕妮, 周义仓, 唐三一. 生物数学原理. 西安:西安交通大学出版社, 2012 Xiao Y N, Zhou Y C, Tang S Y. The Priciple of Mathematical Biology. Xian:Xi'an Jiaotong University Press, 2012 [3] WHO. Ebola virus 2017, http://www.who.int/mediacentre/factsheets/fs103/en/ [4] WHO. Zika virus. 2017, http://www.who.int/mediacentre/factsheets/zika/en/ [5] Arino J, Brauer F, Driessche P V D, Wu J H. A model for influenza with vaccination and antiviral treatment. J Theor Biol, 2008, 253(1):118-130 [6] Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics, Part I. Proc R Soc Lond, 1927, 115:701-721 [7] Ji C Y, Jiang D Q. Threshold behaviour of a stochastic SIR model. Appl Math Model, 2014, 38(21/22):5067-5079 [8] Zhao Y N, Jiang D Q. The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl Math Lett, 2014, 34 (1):90-93 [9] Zhao D L. Study on the threshold of a stochastic SIR epidemic model and its extensions. Commun Nonlinear Sci Numeri Simlat, 2016, 38:172-177 [10] Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model. Math Biosci, 1978, 42(1/2):43-61 [11] Lowen A C, Steel J. Roles of humidity and temperature in shaping influenza seasonality. J Virol, 2014, 88(14):7692 [12] Semenza J C, Menne B. Climate change and infectious diseases in Europe. Lancet Infect Disea, 2009, 9(6):365-375 [13] Karl T R, Trenberth K E. Modern global climate change. Science, 2003, 302:1719-1723 [14] Mao X R. Stochastic Differential Equations and Applications. Chichester:Horwood, 1997 [15] Jiang D Q, Yu J J, Ji C Y, Shi N Z. Asymptotic behavior of global positive solution to a stochastic SIR model. Math and Comput Model, 2011, 54:221-232 [16] 王克. 随机生物数学模型, 北京:科学出版社, 2010 Wang K. The Stochastic Biological Mathematical Models. Beijing:Science Press, 2010 [17] Gray A, Greenhalgh D, Hu L, MAO X R, PAN J. A stochastic differential equation SIS epidemic model. SIAM J Appl Math, 2011, 71(3):876-902 [18] Xu C. Global threshold dynamics of a stochastic differential equation SIS model. J Math Anal Appl, 2017, 477(2):736-757 [19] Hethcote H W. The mathematics of infectious disease. SIAM Rev, 2000, 42(4):599-653 [20] Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model. Math Biosci, 1978, 42(1/2):43-61 [21] Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J Math Biol, 1986, 23(2):187-204 [22] Ruan S G, Wang W D. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J Differ Equa, 2003, 188(1):135-163 [23] Karatzas I, Shreve S. Brown Motion and Stochastic Calculus. New York:Springer Verlag, 1998 [24] Sun X, Wang Y. Stability analysis of a stochastic logistic model with nonlinear diffusion term. Appl Math Model, 2008, 32(10):2067-2075 [25] Arroll B. Common cold. Clinical Evidence, 2011, 3:1510 [26] Greenhalgh D, Liang Y, Mao X. SDE SIS epidemic model with demographic stochasticity and varying population size. Appl Math Comput, 2016, 276:218-238 [27] Sun Y, Wang Z, Zhang Y, Sundell J. In China, students in crowded dormitories with a low ventilation rate have more common colds:evidence for airborne transmission. PLOS One, 2011, 6(11):e27140 [28] Hethcote H W, Yorke J A. Gonorrhea Transmission Dynamics and Control. Berlin:Springer-Verlag, 1984 [29] Heikkinen T, Jarvinen A. The common cold. The Lancet, 2003, 361:51-59 [30] Chen F, Wang K, Du H. Stochastic SIRS model driven by Lévy noise. Acta Math Sci, 2016, 36B(3):740-752 [31] Lin Y G, Jiang D Q, Jin M. Stationary distribution of a stochastic SIR model with saturated incidence and its asymptotic stability. Acta Math Sci, 2015, 35B(3):619-629 |