[1] Davies E, Hinz A. Explicit constants for Rellich ineqaulities in Lp(Ω). Math Z, 1998, 227(2):511-523 [2] Edmunds D, Fortunato D, Jannelli E. Critical exponents, critical dimensions and the biharmonic operator. Arch Ration Mech Anal, 1990, 112(1):269-289 [3] Bhakta M, Musina R. Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials. Nonlinear Anal, 2012, 75(12):3836-3848 [4] D'Ambrosio L, Jennelli E. Nonlinear critical problems for the biharmonic operator with Hardy potential. Calc Var Partial Differential Equations, 2015, 54(1):365-396 [5] Bhakta M. Caffarelli-Kohn-Nirenberg type equations of fourth order with the critical exponent and Rellich potential. J Math Anal Appl, 2016, 433(1):681-700 [6] Hardy G, Littlewood J, Polya G. Inequalities. Cambridge:Cambridge University Press, 1952 [7] Chen Z, Zou W. Existence and symmetry of positive ground states for a doubly critical Schrödinger system. Trans Amer Math Soc, 2015, 367(11):3599-3646 [8] Felli V, Terracini S. Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Comm Partial Differential Equations, 2006, 31(2):469-495 [9] Abdellaoui B, Felli V, Peral I. Some remarks on systems of elliptic equations doubly critical in the whole RN. Calc Var Partial Differential Equations, 2009, 34(1):97-137 [10] Jannelli E. The role played by space dimension in elliptic critcal problems. J Differential Equations, 1999, 156(2):407-426 [11] Kang D. Positive minimizers of the best constants and solutions to coupled critical quasilinear systems. J Differential Equations, 2016, 260(1):133-148 [12] Kang D, Luo J, Shi X L. Solutions to elliptic systems involving doubly critical nonlinearities and Hardy-type potentials. Acta Mathematica Scientia, 2015, 35B(2):423-438 [13] Zhang J, Ma S W. Infinitely many sign-changing solutions for the Brezis-Nirenberg problem involving Hardy-potential. Acta Mathematica Scientia, 2016, 36B(2):527-536 [14] Terracini S. On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Adv Differential Equations, 1996, 1(2):241-264 [15] Kang D. Concentration compactness principles for the systems of critical elliptic equations. Differ Equ Appl, 2012, 4(2):435-444 [16] Lions P L. The concentration compactness principle in the calculus of variations, the limit case (I). Rev Mat Iberoamericana, 1985, 1(1):145-201 [17] Lions P L. The concentration compactness principle in the calculus of variations, the limit case (Ⅱ). Rev Mat Iberoamericana, 1985, 1(2):45-121 [18] Lieb E, Loss M. Analysis. Providence, RI:American Mathematical Society, 2001 [19] Willem M. Analyse Fonctionnelle Élémentaire. Paris:Cassini Éditeurs, 2003 [20] Kang D. Systems of quasilinear elliptic equations involving multiple homogeneous nonlinearities. Appl Math Lett, 2014, 37(1):1-6 [21] Ambrosetti A, Rabinowitz H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14(2):349-381 [22] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(2):437-477 |