数学物理学报 ›› 2017, Vol. 37 ›› Issue (6): 1040-1052.

• 论文 • 上一篇    下一篇

赋范锥到赋范线性空间的嵌入定理与赋范锥上的Hahn-Banach定理

王见勇   

  1. 常熟理工学院数学系 江苏常熟 215500
  • 收稿日期:2016-06-02 修回日期:2017-05-01 出版日期:2017-12-26 发布日期:2017-12-26
  • 作者简介:王见勇,E-mail:jywang@cslg.cn,E-mail:wjy100@163.com
  • 基金资助:
    国家自然科学基金(11471236)

The Theorems of Embedding Normed Cones into Normed Linear Spaces and the Hahn-Banach Extension Theorems

Wang Jianyong   

  1. Department of Mathematics, Changshu Institute of Technology, Jiangsu Changshu 215500
  • Received:2016-06-02 Revised:2017-05-01 Online:2017-12-26 Published:2017-12-26
  • Supported by:
    Spported by the NSFC (11471236)

摘要: 研究赋范锥到赋范线性空间的嵌入问题与赋范锥上连续线性泛函的Hahn-Banach正延拓问题.第一部分采用几何方法直接证明赋范锥到赋范线性空间的嵌入定理.对于给定的赋范线性空间中的凸锥,通过引进凸锥的"锐性模".第二部分研究由锥范数导出的延拓范数与原范数的等价关系.第三部分给出赋范锥上连续线性泛函的Hahn-Banach正延拓定理.

关键词: 赋范锥, 凸锥的锐性模, 赋范线性空间, 嵌入定理, 正延拓

Abstract: The problems of embedding normed cones into normed linear spaces and the problems of extending continuous linear functionals from normed cones to normed linear spaces are studied in this paper. In the first part, by geometric methods, the embedding theorems of normed cones into normed linear spaces are proved directly. In the second part, for a convex cone in a given normed linear space, via the SHARPNESS MODULUS of the convex cone, the equivalent relation of the extension norm derived from the conical norm with the original norm is studied. The Hahn-Banach positive extension theorems of continuous linear functionals from normed cones to normed linear spaces are obtained at last.

Key words: Normed cone, Sharpness modulus of convex cone, Normed linear space, Embedding theorem, Positive extension

中图分类号: 

  • O177.3