数学物理学报 ›› 2016, Vol. 36 ›› Issue (5): 848-860.

• 论文 • 上一篇    下一篇

Sobolev空间Hs(Rd)上波包系的框架性质

徐美玉, 鲁大勇   

  1. 河南大学数学与统计学院 河南开封 475001
  • 收稿日期:2015-11-14 修回日期:2016-03-24 出版日期:2016-10-26 发布日期:2016-10-26
  • 通讯作者: 鲁大勇,E-mail:dayonglu@163.com E-mail:dayonglu@163.com
  • 作者简介:徐美玉,E-mail:xumeiyu604@163.com;鲁大勇,E-mail:dayonglu@163.com
  • 基金资助:

    国家自然科学基金(61471410)和河南省教育厅科学技术研究重点项目(13A110072)资助

Frame Properties of Wave Packet Systems in Sobolev Spaces Hs(Rd)

Xu Meiyu, Lu Dayong   

  1. School of Mathematics and Statistics, Henan University, Henan Kaifeng
  • Received:2015-11-14 Revised:2016-03-24 Online:2016-10-26 Published:2016-10-26
  • Supported by:

    Supported by the NSFC (61471410) and the Key Project of Science and Technology Research of Education Department of Henan Province (13A110072)

摘要:

波包系是通过对有限个函数做伸缩、平移和调制三种运算生成的一种新型函数系,因此传统的小波系和Gabor系都是它的特殊情况.该文首先给出了Sobolev空间Hs(Rd)中一个广义平移函数系成为Bessel点列或框架的充分条件,然后结合波包系是一类特殊的广义平移函数系这一结果,给出了高维Sobolev空间Hs(Rd)上波包系成为框架的一个充分条件.最后,利用矩阵的特征值理论,该文证明了:如果函数g的Fourier变换在某一开球中大于某个正数,那么由它生成的波包系不能成为Hs(Rd)的一个框架.

关键词: Sobolev空间, 框架, 波包系, 广义平移不变系

Abstract:

The traditional wave systems and Gabor systems are special cases of wave packet systems, which are obtained by applying a combination of dilations, translations and modulations to a finite family of functions. In this paper, first, a sufficient condition for a generalized shift-inveriant system to be a Bessel sequence or even a frame for the Sobolev spaces Hs(Rd) is established. Secondly, combining with the result that the wave packet system is a special case of the generalized shift-invariant system, the sufficient condition for the wave packet system to be a frame for the Sobolev spaces Hs(Rd) is obtained. Finally, using the eigenvalues of the matrix theory, this paper proves that if the Fourier transform of the function g on a certain open ball is greater than some positive number, then the wave packet system which is generated by it, cannot to be a frame for Hs(Rd).

Key words: Sobolev spaces, Frames, Wave packet systems, Generalized shift-invariant systems

中图分类号: 

  • O174.2