[1] Lichnerowicz A. Géometrie des Groupes de Transformations. Paris:Dunod, 1958
[2] Obata M. Certain conditions for a Riemannian manifold to be isometric to the sphere. J Math Soc Japan, 1962, 14:333-340
[3] Li P. A lower bound for the first eigenvalue for the Laplacian on compact manifolds. Indiana U Math J, 1979, 28:1013-1019
[4] Li P, Yau S T. Eigenvalues of a compact Riemannian manifold. AMS Proc Symp Pure Math, 1980, 36:205-239
[5] Li P. Survey on partial differential equations in differential geometry. Ann of Math Study, 1982, 102:3-73
[6] Li P, Yau S T. On the Schrödinger equation and the eigenvalue problem. Comm Math Phys, 1983, 88(3):309-318
[7] Singer I M, Wong B, Yau S T, Yau S S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Ann Scuola Norm Sup Pisa Cl Sci, 1985, 12(2):319-333
[8] Zhong J Q, Yang H C. On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci Sinica Ser A, 1984, 27(12):1265-1273
[9] Escobar J F. Uniquness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Comm Pure Appl Math, 1990, 43(7):857-883
[10] Schoen R, Yau S T. Lectures on Differential Geometry. Cambridge:International Press, 1994
[11] Hang F, Wang X D. A remark on Zhong-Yang's eigenvalue estimate. Int Math Res Notices, 2007, 18:Art ID rnm064
[12] Chen M F, Wang F Y. Application of coupling method to the first eigenvalue on manifold. Sci Sin (A), 1994, 37:1-14
[13] Chen M F, Wang F Y. General formula for lower bound of the first eigenvalue on Riemannian manifolds. Sci Sin (A), 1997, 40:384-394
[14] Yang D G. Lower bound estimates of the first eigenvalue for compact manifolds with positive Ricci curvature. Pacific J Math, 1999, 190(2):383-398
[15] Bakry D, Qian Z M. Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv Math, 2000, 155(1):98-153
[16] Ling J. A lower bound of the first Dirichlet eigenvalue of a compact manifold with positive Ricci curvature. International J Math, 2006, 17(5):605-617
[17] Ling J. Lower bounds of the eigenvalues of compact manifolds with positive Ricci curvature. Ann of Global Anal and Geo, 2007, 31(4):385-408
[18] Ling J, Lu Z Q. Bounds of eigenvalues on Riemannian manifolds. Adv Lect Math, 2010, 10:214-264
[19] Shi Y M, Zhang H C. Lower bounds for the first eigenvalue on compact manifolds. Chinese Ann Math Ser A, 2007, 28(6):863-866
[20] Qian Z M, Zhang H C, Zhu X P. Sharp spectral gap and Li-Yau's estimate on Alexandrov spaces. Math Z, 2013, 273(3/4):1175-1195
[21] Andrews B. Gradient and oscillation estimates and their applications in geometric PDE//AMS/IP Stud Adv Math. Providence, RI:Amer Math Soc, 2012
[22] Andrews B, Ni L. Eigenvalue comparison on Bakry-Emery manifolds. Comm Partial Differential Equations, 2012, 37(11):2081-2092
[23] Andrews B, Clutterbuck J. Sharp modulus of continuity for parabolic equations on manifolds and lower bounds for the first eigenvalue. Anal PDE, 2013, 6(5):1013-1024
[24] Ni L. Estimates on the modulus of expansion for vector fields solving nonlinear equations. J Math Pures Appl, 2013, 99(1):1-16 |