[1] Vasil'eva A B, Butuzov V F. Asymptotic Methods in the Theory of Singular Perturbations. Moscow: Vysshaya Shkola, 1990
[2] Butuzov V F, Vasil'eva A B, Nefedov N N. Asymptotic theory of contrast structures (Overview). Avtom Telemekh, 1997, 7: 4--32
[3] Vasil'eva A B, Butuzov V F, Nefedov N N. Contrast structures in singularly perturbed problems. Fundam Prikl Mat, 1998, 4(3): 799--851
[4] Lin X B. Heteroclinic bifurcation and singularly perturbed boundary value problems. J Differ Equations, 1990, 84(2): 319--382
[5] Lin X B. Construction and asymptotic stability of structurally stable internal layer solutions. T Am Math Soc, 2001, 353(8): 2983--3043
[6] 莫嘉琪. 一类非线性方程的激波解. 数学物理学报, 2003, 23A(5): 530--534
[7] 莫嘉琪, 韩祥临. 一个非线性方程的渐近激波解. 数学物理学报, 2004, 24A(2): 164--167
[8] Dmitriev M G. A boundary layer in optimal control problems. Engrg Cybernetics, 1983, 21(3): 134--140
[9] Belokopytov S V, Dmitriev M G. Solution of classical optimal control problems with a boundary layer. Avtom Telemekh, 1989, 7: 71--82
[10] Lee C B, Li R Q. Recent progress in dynamics of boundary layer transition. J Hydrodyn, 2006, 18B(3): 26--30
[11] Ni M K, Dmitriev M G. Contrast structures in the simplest vector variational problem and their asymptotics. Avtom Telemekh, 1998, 5: 41--52
[12] Vasil'eva A B, Dmitriev M G, Ni M K. On a steplike contrast structure in a problem of variational calculus. Comput Math Math Phys, 2004, 44(7): 1203--1212
[13] Bobodzhanov A A, Safonov V F. An internal transition layer in a linear optimal control problem. Differ Equations, 2001, 37(3): 332--345
[14] Vasil'eva A B. On contrast steplike structure for a system of singularly perturbed equations. Zh Vychisl Mat Mat Fiz, 1994, 34: 1401--1411
[15] Belokopytov S V, Dmitriev M G. Direct scheme in optimal control problems with fast and slow motions. Syst Control Lett, 1986, 8(2): 129--135
[16] Mo J Q. A class of nonlinear singularly perturbed problems for reaction diffusion equations. Acta Math Sci, 2003, 23B(3): 377--385
[17] Mo J Q, Wang H, Lin W T. The solvability for a class of singularly perturbed quasi-linear differential system. Acta Math Sci, 2008, 28B(3): 495--500 |