数学物理学报 ›› 2011, Vol. 31 ›› Issue (2): 305-319.

• 论文 • 上一篇    下一篇

分母为正系数多项式的有理函数逼近的整体和点态估计

虞旦盛1|周颂平2   

  1. 1.杭州师范大学数学系 杭州 310036|2.浙江理工大学数学研究所 杭州 310028
  • 收稿日期:2008-11-08 修回日期:2009-12-06 出版日期:2011-04-25 发布日期:2011-04-25
  • 基金资助:

    国家自然科学基金(10901044)和浙江省钱江人才计划项目资助

Global and Pointwise Estimates for Approximation by Rational Functions with Polynomials of Positive Coefficients as the Denominators

 YU Dan-Sheng1, ZHOU Song-Ping2   

  1. 1.Departement of Mathematics, Hangzhou Normal University, Hangzhou 310036|2.Institute of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310028
  • Received:2008-11-08 Revised:2009-12-06 Online:2011-04-25 Published:2011-04-25
  • Supported by:

    国家自然科学基金(10901044)和浙江省钱江人才计划项目资助

摘要:

对任意定义在[0,1]上的非负连续函数f(x)(f≠0), 该文证得: 存在一个正系数多项式Pn(x)∈Πn(+),使得

\[\left|f(x)-\frac{1}{P_n(x)}\right|\leq C\omega_{\varphi^\lambda}\big(f,n^{-1/2}A_n^{1-\lambda}(x)\big),\]
其中An(x)=\sqrt{x(1-x)}+1/\sqrt{n},\;0≤λ≤ 1, 而Πn(+)表示由所有次数不超过n的正系数多项式构成的集合. 当f(x)在(0, 1)内恰好改变l次符号时, 该文构造了有理函数r(x)\in Rn^l(+),使得

\[\left|f(x)-r(x)\right|\leqC(l+1)^{2}\omega_{\varphi^\lambda}\big(f,n^{-1/2}A_n^{1-\lambda}(x)\big).

关键词: 正系数多项式, 有理函数, 逼近阶, 整体估计, 点态估计

Abstract:

For non-negative continuous function f(x) defined on [0,1], and f≠0, the present paper proves that, there is a polynomial Pn(x)∈Πn(+), such that
\[\left|f(x)-\frac{1}{P_n(x)}\right|\leq C\omega_{\varphi^\lambda}\big(f,n^{-1/2}A_n^{1-\lambda}(x)\big),\]
where An(x)=\sqrt{x(1-x)}+1/\sqrt{n},\;0\leq \lambda\leq 1,$ and $\Pi_n(+)$ indicates the set of all polynomials of degree n with positive coefficients. When $f(x)$ has exact $l$ sign change points in (0, 1), we also construct a rational function $r(x)\in R_n^l(+)$ such that
\[\left|f(x)-r(x)\right|\leqC(l+1)^{2}\omega_{\varphi^\lambda}\big(f,n^{-1/2}A_n^{1-\lambda}(x)\big).\]

Key words: Polynomials of positive coefficients, Rational functions, Approximation rate, Global estimates, Pointwise estimates

中图分类号: 

  • 41A20