[1] Li T, Yorke J. Periodic three implies chaos. Ammer Math Moth, 1975, 82: 985--992
[2] Devaney R. Chaotic Dynamical Systems. Addison-Wesley: Reading MA, 1989
[3] Lasota P. On the generic chaos in dynamical systems. Univ Iagel Acta Math, 1985, 25: 293--298
[4] Snoha L. Generic chaos. Comment Math Univ Carolinae, 1990, 31(4): 793--810
[5] Snoha L. Dense chaos. Comment Math Univ Carolinae, 1992, 33(4): 747--752
[6] Xiong J, Yang Z. Chaos Caused by a Topologically Mixing Map. Dynamical Systems and Related Topics. Singapore: World Scientific Press, 1992: 550--572
[7] Schweizer B, Smital J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans Amer Math Soc, 1994, 344: 737--754
[8] Balibrea F, Smital J, Stefankova M. The three versions of distributional chaos. Chaos, Soliton and Fractals, 2005, 23: 1581--1583
[9] Paganoni L, Smital J. Strange distributionally chaotic triangular maps. Chaos, Solitons and Fractals, 2005, 26(2): 581--589
[10] Paganoni L, Smital J. Strange distributionally chaotic triangular maps II. Chaos, Solitons and Fractals, 2006, 28(5): 1356--1365
[11] Xiong J, L\"u J, Tan F. Furstenberg families and chaos. Science in China, Series A, 2007, 37(5): 532--540
[12] Mai J. Continuous maps with the whole space being a Li-Yorke chaotic set (Chinese). Chinese Science Bulletin, 1997, 42: 1494--1497
[13] Huang W, Ye X. Homeomorphisms with the whole compacta being scrambled sets. Ergod Th \& Dynam Sys, 2001, 21: 77--91
[14] Hui Wang, Gongfu Liaoa, Qinjie Fana. A note on the map with the whole space being a scrambled set. Nonlinear Analysis, 2009, 70: 2400--2402
[15] Blanchard F, Huang W, Snoha L. Topological size of scrambled sets. to appear Colloq Math
[16] Kechris A. Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol 156. New York: Springer-Verlag, 1995
[17] Akin E. Lectures on Cantor and Mycielski Sets for Dynamical Systems, Chapel Hill Ergodic Theory Workshops. Contemp Math 356. Providence, RI: Amer Math Soc, 2004: 21--79 |