[1] Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. New York: Wiley, 1974
[2] Campbell S L, Meyer C D. Generalized Inverse of Linear Transformation. London: Pitman, 1979; New York: Dover, 1991
[3] Groetsch C W. Generalized Inverses of Linear Operators: Rrepresentation and Approximation. Monographs and
Textbooks in Pure and Applied Mathematics, 37. New York-Basel: Marcel Dekker Inc, 1977
[4] Wang G R, Wei Y M, Qiao S Z. Generalized Inverse: Theory and Computations. Beijing, New York: Science Press, 1993
[5] Rothblum U G. A representation of the Drazin inverse and characterization of the index. SIAM J Appl Math, 1976, 31: 646--648
[6] Cline R E, Greville T N E. A Drazin inverse for rectangular matrices. Linear Algebra Appl, 1980, 29: 53--62
[7] Koliha J J. A generalized Drazin inverse. Glasgow Math J, 1996, 38: 367--381
[8] Du H K, Deng C Y. The representation and characterization of Dazin inverse of operators on a Hilbert space. Linear Algebra Appl, 2005, 407: 117--124
[9] Wei Y M. A characterization and representation of the Drazin inverse. SIAM J Matrix Anal Appl, 1996, 17: 744--747
[10] Wei Y M. A characterization for the $W$-weighted Drazin inverse and a cramer rule for the W-weighted Drazin inverse solution. Linear Algebra Appl, 2002, 125: 303--310
[11] Wei Yimin. Representations and perturbations of Drazin inverses in Banach spaces. Chinese Ann Math (Ser A), 2000, 21: 33--38;
[12] Wei Y M, Qiao S Z. The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Applied Math Comput, 2003, 138: 77--89
[13] 郑兵. 广义逆A(2)T, S 的表示与逼近. 数学物理学报, 2006, 26A(6): 926--937
[14] 郑兵. Hilbert 空间上线性算子广义逆A(2)T, S 的存在性及其表达式. 数学物理学报, 2007, 27A(2): 288--295
[15] 刘晓冀, 张仕光. 具有核的态射的ω -加权Drazin 逆. 数学物理学报, 2009, 29A(3): 741--750 |