[1] Lavretsky E. On the geometric convergence of neural approximation. IEEE Transaction On Neural Networks, 2002, 2: 174--282
[2] Jones L K. A simple lemma on greedy approximations in Hilbert space and convergence rates for projection pursuit regression and neural network training. Ann Statist, 1992, 20: 608--613
[3] Barron R A. Universal approximation bounds for superposititions of a sigmoidal function. IEEE Trans Inform Theory, 1993, 39: 930--945
[4] Cybenko G. Mathematics of control. Signals and Systems, 1989, 2: 303--314
[5] Chen Tianping, Chen H, Liu R Y. Computing Science and Statistics. Proceedings of the 22nd Symposium on the Interface. New York: Springer-Verlag, 1991: 163--168
[6] Chen T P. Approximation problems in system identification with neural networks. Science in China, Ser A, 1994, 24: 1--7
[7] Silnichenko A V. Rate of convergence of greedy algorithms. Mathematical Notes, 2004, 76: 582--586
[8] Livshits E D. Rate of cinvergence of pure greedy algorithms. Mathematical Notes, 2004, 76: 497--510
[9] Heping W. Greedy algorithm for functions with low mixed smoothness. J Approx Theory, 2005, 137: 264--276
[10] Livshits E D, Tenlyakov V N. Simultaneous greedy approximation in Banach spaces. J Complexity, 2005, 21: 275--293
[11] Temlyakov V N. Greedy type approximation in Banach spaces and applications. Complexity, 2005, 21: 257--292
[12] Leviatan D, Temlyakov V N. Simultaneous approximaton by greedy algirithms. Adv Comput Math, 2006, 25: 73--90
[13] Temlyakov V N. Greedy expansions in Banach spaces. Adv Comput Math, 2007, 26: 431--449
[14] Temlyakov V N. Relaxation in greedy approximation. Constr Approx, 2008, 28: 1--25
[15] Dilwoth S J. Weak convergence of greedy algorithms in Banach spaces. Fourier Anal Appl, 2008, 14: 609--628
[16] Deimling K. Nonlinear Functional Analysis. Berlin: Springer-Verlag, 1985
[17] Dragomir S S. On continuous sublinear functionals in reflexive Banach spaces and applications. Riv Mat Univ Parma, 1990, 12: 239--250
[18] Dragomir S S. Approximation of continuous linear functionals in real normed spaces. Rend Mat, 1992, 12: 357--364
[19] Dragomir S S. Continuous linear functionals and norm derivatives in real normed spaces. Univ Beograd Publ Elektrotehn Fak, 1992, 3: 5--12
[20] Xu H K. Inequalities in Banach spaces with applications. Nonlinear Analysis Theory and Applications, 1991, 12: 1127--1138
[21] Reich S. An iterative procedure for constructing zeros of accretive sets in Banach space. Nonlinear Anal, 1978, 2: 85--92 |