[1] Lu S. On the existence of positive periodic solutions for neutral functional differential equation with multiple deviating arguments. J Math Anal Appl, 2003, 280: 321--333
[2] Kuang Y, Feldstein A. Boundedness of solutions of a nonlinear nonautonomous neutral delay equation. J Math Anal Appl, 1991, 156: 293--304
[3] Gopalsamy K, He X, Wen L. On a periodic neutral logistic equation. Glasgow Math J, 1991, 33: 281--286
[4] Gopalsamy K, Zhang B G. On a neutral delay logistic equation. Dynam Stability Systems, 1988, 2: 183--195
[5] Pielou E C. Mathematics Ecology. New York: Wiley-Interscience, 1977
[6] Chen F, Lin F, Chen X. Sufficient conditions for the existence positive periodic solutions of a clas s of neutral delay models with feedback control. Appl Math Comput, 2004, 158(1): 45--68
[7] Yang Z, Cao J. Existence of periodic solutions in neutral state-dependent delays equations and models. J Comput Appl Math, 2005, 174: 179--199
[8] Gaines R E, Mawhin J L. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1977
[9] Cäc N P, Gatica J A. Fixed point theorems for mappings in ordered Banach spaces. J Math Anal Appl, 1979, 71: 547--557
[10] Kaufmann E R, Raffoul Y N. Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J Math Anal Appl, 2006, 319: 315--325
[11] Bohner M, Peterson A. Dynamic Equations on Time Scales. An Introduction with Applications. Boston: Birkhä}user, 2001
[12] Guo D. Positive solutions of nonlinear operator equations and its applications to nonlinear integral equations. Adv Math, 1984, 13: 294--310 (in Chinese)
[13] Xing Y, Han M, Zheng G. Initial value problem for first-order integro-differential equation of Volterra type on time scales. Nonlinear Anal, 2005, 60: 429--442 |