[1] Babuska I, Osborn J, Pitkaranta J. Analysis of mixed methods using mesh dependent norms. Math Comput, 1980, 35(152): 1039--1062
[2] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 2002
[3] Brezzi R, Hager W W, Raviart P A. Error estimates for the finite element solution of variational inequalities-Part 1: Primal theory. Numer Math, 1977, 28(4): 431--443
[4] Brezzi R, Hager W W, Raviart P A. Error estimates for the finite element solution of variational inequalities-Part 2: Mixed methods. Numer Math, 1978, 31(1): 1--16
[5] Chen Z X. Finite Element Methods and Their Applications. Heidelberg: Springer-Verlag, 2005
[6] Arbogast T, Chen Z X. On the implementation of mixed methods as nonconforming methods for second order elliptic problems.
Math Comp, 1995, 64(211): 943--972
[7] Falk R S. Error estimates for the approximation of a class of variational inequalities. Math Comput, 1974, 28(128): 963--971
[8] Duvaut G, Lions J L. Inequalities in Mechanics and Physics. Berlin: Spring-Verlag, 1976
[9] Glowinski R. Numerical Methods for Nonlinear Variational Problems. New York: Springer-Verlag, 1984
[10] Glowinski R, Lions J L, Trémolières R. Numerical Analysis of Variational Inequalities. Amsterdam, New York: North Holland, 1981
[11] Glowinski R, Marini D, Vidrascu M. Finite element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J Numer Anal, 1984, 49(4): 127--167
[12] Han W M, Wang L H. Nonconforming finite element analysis for a plate contact problem. SIAM J Numer Anal, 2002, 40(5): 1683--1697
[13] Huang H C, Han W M, Zhou J S. The regularization method for an obstacle problem. Numer Math, 1994, 69(2): 155--166
[14] Kikuchi N. Convergence of a penalty-finite element approximation for an obstacle problem. Numer Math, 1981, 37(1): 105--120
[15] Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. Philadelphia: SIAM, 2000
[16] Kondratev V A. Boundary value problems for elliptic equations with conical or angular point. Trans Moscow Math Soc, 1967, 10: 227--313
[17] Li J C. Full-order convergence of a mixed finite element method for fourth-order elliptic equations. J Math Anal Appl, 1999, 230(2): 329--349
[18] Li J C. Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Advances in Computational Mathematics, 2005, 23(1/2): 21--30
[19] Lions J L. Quelques Méthodes de R\'{e}solution des Problèmes aux Limites non Lin\'{e}aires. Paris: Dunod, 1969
[20] Scholz R. Numerical solution of the obstacle problem by the penalty method. Computing, 1984, 32(4): 297--306
[21] Scholz R. Numerical solution of the obstacle problem by the penalty method (Time-dependent problems). Numer Math, 1986, 49(23): 255--268
[22] Shi D Y, Chen S C, Hagiwara I. General error estimates of the nonconforming finite elements for a fouth order variational inequality with displacement obstacle. Mathematica Numerica Sinica, 2003, 25(2): 99--106
[23] Shi D Y, Chen S C. Quasi-conforming finte element approximation for a fourth order variational inequality with displacement obstacle. Acta Mathematica Scientia, 2003, 23(1): 61--66
[24] Spann W. Error estimate for the approximation of semicoercive variational inequalities. Numer Math, 1994, 69(1): 103--116
[25] Wang L H. Morley's element approximation to a fourth order variational inequality with curvature obstacle. Math Numer Sinica, 1990, 12(3): 279--284
[26] Wang L H. Some nonconforming finite element approximation of a fourth order variational inequality with displacement obstacle. Math Numer Sinica, 1990, 12(4): 352--356
[27] Wang L H. Some strongly discontinuous nonconforming finite element approximations of a fourth order variational inequality with displacement obstacle. Acta Numerical Mathematica, 1990, 12(1): 76--84
[28] Wang L H. On the quadratic finite element approximation to the obstacle problem. Numer Math, 2002, 92(4): 771--778
[29] Zhang Y M. Monotone convergence of finite element approximations of obstacle problems. Applied Mathematics Letters, 2007, 20(4): 445--449
[30] Zhang Y M. Numerical Solution of Variational Inequalities[D]. Chicago: University of Chicago, 1997
[31] Zhang Y M. Error estimates for the numerical approximation of time-dependent flow of Bingham fluid in cylindrical pipes by the regularization method. Numer Math, 2003, 96(1): 153--184 |