数学物理学报 ›› 2009, Vol. 29 ›› Issue (5): 1240-1245.

• 论文 • 上一篇    下一篇

关于有限Abelian群的生成子集的基数

  

  1. 1.中南大学数学与计算技术学院 长沙 410075|2.湖南第一师范学院数学系 长沙 410002
  • 收稿日期:2007-01-08 修回日期:2008-12-26 出版日期:2009-10-25 发布日期:2009-10-25
  • 基金资助:

    国家自然科学基金(10471152)资助

On the Cardinality of Generating Subsets of Finite Abelian Groups

  1. 1.School of Mathematics Sciences and Computing Technology, Central South University, Changsha 410075|2.Department of Mathematics, Hunan First Normal College, Changsha 410002)
  • Received:2007-01-08 Revised:2008-12-26 Online:2009-10-25 Published:2009-10-25
  • Supported by:

    国家自然科学基金(10471152)资助

摘要:

假若 G =Zm1   Zm2     …     Zmr 为 (m1, m2, …, mr)型Abelian群, 其中Zmimi 阶的循环群且1≤ i ≤ r, m1 |m2|…| mr, SG 的满足0 ∈ S=-S 的生成子集. 如果 |S|>|G|/ρ, 其中 ρ≥l mr /2l 且mr=e(G) 为群 G 的所有元素的阶的最小公倍数, 则ρS=G.  更进一步作者推广了Klopsch与lev [1]的一个结论,有:若 G=Z2    Zm 为 (2, m) 型 Abelian 群(m ≥8), 则  tm/2(G)=0.

关键词: 基数, 生成集, 对称闭包

Abstract:

Suppose G =Zm Zm2        Zmr be an Abelian group of type (m1, m2, …, mr) (Zmi is a cyclic group of order mi, 1≤ i ≤ r, m1|m2| …| mr). Let S be a symmetrically closed set (S is symmetrically closed if 0 ∈ S =-S) and a generating set of G. If |S|>|G|/ρ, where ρ ≥lmr /2 land mr=e(G) denotes the least common multiple of the orders of all elements of  group G, then ρS=G. And if G=Z2    Zm is an Abelian group of type (2, m) (m ≥ 8), then t m /2}(G)=0, which extends the related results of Klopsch and Lev[1].

Key words: Cardinality, Generating sets, Symmetric closure

中图分类号: 

  • 11D61