数学物理学报

• 论文 • 上一篇    下一篇

Banach空间中框架的对偶原理

1, 2肖雪梅; 2朱玉灿   

  1. (1. 辽东学院师范学院数学系 辽宁丹东 118000; 2. 福州大学数学与计算机科学学院 福建福州 350002)
  • 收稿日期:2006-07-11 修回日期:2008-06-25 出版日期:2009-02-25 发布日期:2009-02-25
  • 通讯作者: 肖雪梅
  • 基金资助:
    福建省教育厅项目(JB04038)和辽东学院科研基金项目(2007-Y03)资助

Duality Principles of Frames in Banach Spaces

1,2Xiao Xuemei; 2Zhu Yucan   

  1. (1. Department of Mathematics, Normal College, Eastern Liaoning University, Liaoning Dandong 118000; 2. College of Mathematics and Computer Science, Fuzhou University, Fujian Fuzhou 350002)
  • Received:2006-07-11 Revised:2008-06-25 Online:2009-02-25 Published:2009-02-25
  • Contact: Xiao Xuemei

摘要: Gabor理论中的对偶原理(例如Ron-Shen对偶原理和Wexler-Raz双正交关系)在研究Gabor系统时起到了至关重要的作用. 对Banach空间中的任意序列, 该文定义了仅依赖两组 p-Riesz基的一个相关的序列(Riesz -对偶序列), 研究它与前一组序列相关的性质. 推广了P. G. Gasazza、G. Kutyniok和M. C. Lammers在可分Hilbert空间中框架的对偶原理的一些结果.

关键词: 框架的对偶, p-Riesz基, q -框架.

Abstract: Duality principles in Gabor theory such as the Ron-Shen duality principle and the Wexler-Raz biorthogonality relations play a fundamental role for analyzing Gabor systems. For each sequence in a Banach space X, we define a corresponding sequence dependent only on two $p$-Riesz bases in the Banach space X. Then we characterize exactly properties of the first sequence in terms of the associated one. We generate some results that were obtained by P. G. Casazza, G. Kutyniok and M. C. Lammers about duality principles of frames in a separable Hilbert space H.

Key words: Duality of frame, p-Riesz basis, q-frame.

中图分类号: 

  • 42C15