数学物理学报

• 论文 • 上一篇    下一篇

Kolmogorov-Spieqel-Siveshinky方程大时间问题的Fourier拟谱逼近

梁宗旗   

  1. (集美大学理学院 厦门 361021)
  • 收稿日期:2006-03-12 修回日期:2008-01-09 出版日期:2008-10-25 发布日期:2008-10-25
  • 通讯作者: 梁宗旗
  • 基金资助:
    福建省自然科学基金(2008J0198, Z0511043)和福建省青年创新基金(2005J037)资助

The Fourier Pseudo-spectral Approximation of the Large-time Problem of Kolmogorov-Spieqel-Siveshinky Equation

Liang Zongqi   

  1. (School of Sciences, Jimei University, Xiamen 361021)
  • Received:2006-03-12 Revised:2008-01-09 Online:2008-10-25 Published:2008-10-25
  • Contact: Liang Zongqi

摘要: 该文讨论了Kolmogorov-Spieqel-Siveshinky方程的周期初值问题, 研究了半离散Fourier拟谱解的长时间行为, 证明了半离散系统的收敛性和整体吸引子的存在性. 构造了全离散的三层显式Fourier拟谱格式, 并证明了该格式的收敛性, 最后通过数值计算验证了格式的可信性. 数值结果表明: 该格式是长时间稳定并可取时间大步长. 作者模拟了方程的解在相空间的轨线, 得到了一些有意义的结论.

关键词: Kolmogorov-Spieqel-Siveshinky方程, 半离散拟谱方法, 全离散拟谱方法, 收敛性

Abstract: The paper is concerned with the Kolmogorov-Spieqel-Siveshinky equation with periodic initial value problems. The long-time behavior of the solutions for semi-discrete Fourier pseudo-spectral scheme is studied.The convergence and the existence of the global attractors for the discrete system is proposed. The full-discrete Fourier pseudo-spectral explicit scheme and its convergence is discussed. Finally, the credibility of the scheme is examined by numerical examples to show that the scheme is stable for a long time and the step-length is long. The orbits in the phase space of the solution are presented.

Key words: Kolmogorov-Spieqel-Siveshinky equation, Semi-discrete Fourier pseudo-spectral method, Full-discrete Fourier pseudo-spectral method, Convergence

中图分类号: 

  • 65N20