数学物理学报

• 论文 • 上一篇    下一篇

Armijo线性搜索下Hager-Zhang共轭梯度法的全局收敛性

张丽; 周伟军   

  1. (长沙理工大学数学学院 长沙 410076)
  • 收稿日期:2006-04-08 修回日期:2008-04-23 出版日期:2008-10-25 发布日期:2008-10-25
  • 通讯作者: 张丽
  • 基金资助:
    国家自然科学基金(10701018)资助

On the Global Convergence of the Hager-Zhang Conjugate Gradient Method with Armijo Line Search

Zhang Li; Zhou Weijun   

  1. (College of Mathematics, Changsha University of Science and Technology, Changsha 410076)
  • Received:2006-04-08 Revised:2008-04-23 Online:2008-10-25 Published:2008-10-25
  • Contact: Zhang Li

摘要: Hager和Zhang[4]提出了一种新的非线性共轭梯度法(简称 HZ 方法), 并证明了该方法在 Wolfe搜索和 Goldstein 搜索下求解强凸问题的全局收敛性.但是HZ方法在标准Armijo 搜索下求解非凸问题是否全局收敛尚不清楚.该文提出了一种保守的HZ共轭梯度法,并且证明了这种方法在 Armijo 线性搜索下求解非凸优化问题的全局收敛性.此外,作者给出了一些 数值结果以检验该方法的有效性.

关键词: HZ方法, Armijo线性搜索, 全局收敛

Abstract: Hager and Zhang in [4] proposed a new nonlinear conjugate gradient method (HZ method) and proved that this method is globally convergent when the line search fulfills the Wolfe conditions or the Goldstein’s conditions for strongly convex functions. But no global convergence results were obtained for nonconvex objective functions with Armijo line search. In this paper, the authors introduce a cautious HZ method and prove that the proposed method with Armijo line search converges globally even if the minimization function is
nonconvex. The authors also present some numerical results to show the efficiency of the proposed method.

Key words: HZ method, Armijo line search, Global convergence

中图分类号: 

  • 90C30