数学物理学报

• 论文 • 上一篇    

具有种群Logistic增长及饱和传染率的SIS模型的稳定性和Hopf分支

徐为坚;   

  1. 玉林师范学院数学与计算机科学系 玉林 537000
  • 收稿日期:2006-08-14 修回日期:2007-07-31 出版日期:2008-06-25 发布日期:2008-06-25
  • 通讯作者: 徐为坚
  • 基金资助:
    国家自然科学基金(10471117)及广西教育厅科研项目(200510211)资助

Stability and Hopf Bifurcation of an SIS Model with Species

Logistic Growth and Saturating Infect Rate

Xu Weijian;   

  1. Department of Mathematics and Computer Science, Yulin Normal University, Yulin 537000
  • Received:2006-08-14 Revised:2007-07-31 Online:2008-06-25 Published:2008-06-25
  • Contact: Xu Weijian

摘要: 该文研究一类具有种群Logistic增长及饱和传染率的SIS传染病模型,讨论了平衡点的存在性及全局渐近稳定性,得到疾病消除的阈值就是基本再生数$R_{0}=1$. 证明了,当$R_{0}<1$ 时,无病平衡点全局渐近稳定;
当$R_{0}>1$ 且$\alpha K\leq 1$ 时,正平衡点全局渐近稳定;
当$R_{0}>1$ 且$\Delta ={0}$ 时,系统在正平衡点附近发生Hopf分支;
当$R_{0}>1$ 且$\Delta <{0}$ 时,系统在正平衡点外围附近存在唯一稳定的极限环.

关键词: 平衡点, 全局渐近稳定, 极限环, Hopf分支

Abstract:

In this paper, an SIS infective model with species Logistic growth
and saturating infective rate is studied. The author discusses the existence and the globally asymptotical stability of the equilibrium, and obtains the threshold value at which disease is eliminated, which is just the basic rebirth number $R_{0}=1$. The author proves that when$R_{0}<1$, the non-disease equilibrium is globally asymptotically stable; when $R_{0}>1$ and $\alpha K\leq 1$, the positive equilibrium is globally asymptotically
stable; when $R_{0}>1$ and $ \Delta =0 $, a Hopf bifurcation occurs near the positive equilibrium; when $R_{0}>1$ and $ \Delta <0 $, the system has a unique limit cycle which is stable near the outside of the positive equilibrium.

Key words: Equilibrium, Global asymptotic stability, Limit cycle, Hopf bifurcation

中图分类号: 

  • 34D23