数学物理学报

• 论文 • 上一篇    下一篇

cut* 空间的拓扑性质

彭良雪;黄桂芳   

  1. 北京工业大学应用数理学院 北京 100022
  • 收稿日期:2006-04-06 修回日期:2008-03-06 出版日期:2008-06-25 发布日期:2008-06-25
  • 通讯作者: 彭良雪
  • 基金资助:
    北京市人才强教项目资助

The Properties of cut* Topological Spaces

Peng Liangxue;Huang Guifang   

  1. College of Applied Science, Beijing University of Technology, Beijing 100124
  • Received:2006-04-06 Revised:2008-03-06 Online:2008-06-25 Published:2008-06-25
  • Contact: Peng Liangxue

摘要: 该文引入了 cut*空间的概念,所谓的 cut*空间是指去掉任意一点连通,去掉任意两点不连通的连通空间.通过对其性质的讨论,得到如下主要结论: 首先得到cut*空间中每个点非开即闭,并且cut*空间中有无限多个闭点;其次讨论了一类特殊的 cut*空间,即去掉一点是COTS的 cut* 空间.指出``$X$是 cut*空间,任意 $x\inX,X\setminus\{x\}$是不可约cut空间''这样的空间类是不存在的.在文章的最后,讨论了去掉一点是LOTS的 cut*空间的覆盖性质,得到这样的空间是紧空间或Lindel\"of空间的结论.

关键词: cut空间, cut*空间, LOTS, Khalimsky直线

Abstract: In this note, the class of cut*spaces are introduced.
A connected topological space X is called a cut* space, if $X\setminus \{x\}$ is connected for any $x\in X$, and $X\setminus \{x,y\}$ is not connected for any distinct points $x,y\in X$. The properties of cut* spaces are discussed. The authors show that if X is a cut* spaces, then $\{x\}$ is open or closed for any $x\in X$, and $X$ has infinite closed points. The authors also discuss the properties of some special cut* spaces, which satisfy that $X\setminus \{x\}$ is COTS for any $x\in X$. The authors show that there doesn't exisxt a cut* space $X$, satisfying that $X\setminus \{x\}$ is a irreducible cut space for any $x\in X$. In the last part of the note, the authors show that $X$ is compact or Lindel\"of, if $X$ is a cut* space and $X\setminus \{x\}$ is LOTS for any $x\in X$.

Key words: cut space, cut* space, LOTS, Khalimsky line

中图分类号: 

  • 54D05