数学物理学报

• 论文 • 上一篇    下一篇

共轭 A -调和张量的双权积分不等式

高红亚;侯兰茹   

  1. 北大学 数学与计算机学院 保定 071002
    河北省数学研究中心 石家庄 050016
  • 收稿日期:2005-10-08 修回日期:2006-08-22 出版日期:2008-04-25 发布日期:2008-04-25
  • 通讯作者: 高红亚
  • 基金资助:

    国家自然科学基金(10471149)、河北省自然科学基金数学研究专项(07M003)和河北省教育厅博士基金(B2004103)资助

Two-Weight Integral Inequalities for Conjugate ${\cal A}$-Harmonic Tensors

Gao Hongya; Hou Lanru   

  1. College of Mathematics and Computer Science, Hebei University, Baoding 071002;
    Hebei Provincial Center for Mathematics, Shijiazhuang 050016
  • Received:2005-10-08 Revised:2006-08-22 Online:2008-04-25 Published:2008-04-25
  • Contact: Gao Hongya

摘要: 该文引进一类新的权函数 $-A^{\lambda_{3}}_{r}(\lambda_{1},\lambda-{2},\Omega)$ -权, 证明了共轭$\cal A$ -调和张量的局部加权积分不等式.作为局部结果的应用, 证明了在有界区域$\Omega$中共轭$\cal A$ -调和张量的整体加权积分不等式.
这些结果可看成是经典结果的推广.最后, 给出了上述结果在拟正则映射理论中的应用.

关键词: 共轭${\cal A}$ -调和张量, $A^{\lambda_{3}}_{r}(\lambda_{1},\lambda_{2},\Omega)$ -权, 加权积分不等式, 拟正则映射

Abstract: In this paper, the authors first introduce a new
weight: $A^{\lambda_{3}}_{r}(\lambda_{1},\lambda_{2},\Omega)$-weight,and prove the local weighted integral inequalities for conjugate
${\cal A}$ -harmonic tensors. Then, as an application of the local
result, the authors prove a global weighted integral inequality for
conjugate ${\cal A}$-harmonic tensors in a bounded domain $\Omega$,
which can be regarded as generalizations of the classical results.
Finally, the authors give some applications of the above results to
quasiregular mappings.

Key words: Conjugate ${\cal A}$-harmonic tensor, $A^{\lambda_{3}}_{r}(\lambda_{1},\lambda_{2},\Omega)$-weight, Weighted integral inequality, Quasiregular mapping

中图分类号: 

  • 31B05