数学物理学报

• 论文 • 上一篇    下一篇

一类椭圆型随机偏微分方程弱解的存在性

冉启康   

  1. 海财经大学应用数学系 上海 200433
  • 收稿日期:2006-06-18 修回日期:2007-07-17 出版日期:2008-04-25 发布日期:2008-04-25
  • 通讯作者: 冉启康
  • 基金资助:
    国家自然科学基金(10371021)资助

Existence of Weak Solutions to a Class of Elliptic Stochastic

Partial Differential Equations

Ran Qikang   

  1. Department of Applied Mathematics, Shanghai University of Finance and Economics,Shanghai 200433
  • Received:2006-06-18 Revised:2007-07-17 Online:2008-04-25 Published:2008-04-25
  • Contact: Ran Qikang

摘要: 设$D$是$R^N$ ($N>1$)中有界开集,$(\Omega, {\cal F}, P)$是一个完备的概率空间.该文研究了下列随机边值问题弱解的存在性问题\[\left\{\begin{array}{ll}
-{\rm div} A(x,\omega,u, \nabla u)=f(x,\omega, u),\,\, &(x,\omega)\in D\times \Omega,\\
u=0, &(x,\omega)\in \partial D\times \Omega,
\end{array}\right.\]其中, div与 $\nabla $ 表示仅对 $x$求微分. 首先,作者引入了弱解的概念; 然后,作者转化随机问题为高维确定性问题;最后,作者证明了该问题弱解的存在性.

关键词: 非线性椭圆随机偏微分方程, 弱解, Leray-Schauder连续方法

Abstract: In this paper the authors study of following problem: Let $D$ be a bounded open set of $R^N(N>1)$ and
$(\Omega,F,P)$ is a probability space. The authors study the existence of weak solutions of the
following stochastic boundary value problem:
$$
\left\{
\begin{array}{ll}
-{\rm div} A(x,\omega,u, \nabla u)=f(x,\omega, u),\,\, &(x,\omega)\in D\times \Omega,\\
u=0, &(x,\omega)\in \partial D\times \Omega,
\end{array}\right.
$$
where by div and $\nabla$ the authors denote differentiation with respect to $x$ only. First, the authors
introduce the concept of the weak solution, then the authors transform the stochastic problem into a deterministic
one in high-dimensions. Finally, the authors prove the existence of weak solutions.

Key words: Nonlinear elliptic stochastic partial differential equations, Weak solutions,
Leray-Schauder continuation method

中图分类号: 

  • 35J65