数学物理学报
• 论文 • 上一篇 下一篇
庄艳;戴朝寿
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
基金资助:
Zhuang Yan;Dai Chaoshou
Received:
Revised:
Online:
Published:
Contact:
摘要: 该文研究一类推广的Rd中具有有限记忆的随机递归模型,引入了一个与该结构有关的函数Ψ(β),β≥0,构造了一个随机测度μω,证明了由该结构产生的随机集 K(ω)的Hausdorff维数是α:=inf{β:Ψ(β)≤1}.
关键词: Hausdorff维数, 随机结构, 上鞅, 测度的扩张, 随机测度, 局部维数
Abstract: In this paper, a class of generalized random recursive construction with finite memory in Euclidean d-space is researched. For each β≥0, a function Ψ(β) assiociated with the construction is introduced and a random measure μω is constructed. That the Hausdorff dimension of the random limit set K(ω) generated by the above construction is equal to α:=inf{β:Ψ(β)≤1} is proved.
Key words: Hausdorff dimension, Random construction, Supermartingale, Extension of measure, Random measure, Local dimension
中图分类号:
庄艳;戴朝寿. 一类推广的随机分形的 Hausdorff维数[J]. 数学物理学报, 2008, 28(2): 240-250.
Zhuang Yan;Dai Chaoshou. The Hausdorff Dimension for a Class of Generalized Random Fractals[J]. Acta mathematica scientia,Series A, 2008, 28(2): 240-250.
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://121.43.60.238/sxwlxbA/CN/
http://121.43.60.238/sxwlxbA/CN/Y2008/V28/I2/240
Cited