数学物理学报

• 论文 • 上一篇    下一篇

一类推广的随机分形的 Hausdorff维数

庄艳;戴朝寿   

  1. 徐州师范大学数学科学学院 徐州 221116
  • 收稿日期:2005-08-14 修回日期:2006-07-11 出版日期:2008-04-25 发布日期:2008-04-25
  • 通讯作者: 庄艳
  • 基金资助:
    徐州师范大学校重点基金(04XLA01)资助

The Hausdorff Dimension for a Class of Generalized Random Fractals

Zhuang Yan;Dai Chaoshou   

  1. Department of Mathematics, Xuzhou Normal University, Xuzhou 221116
  • Received:2005-08-14 Revised:2006-07-11 Online:2008-04-25 Published:2008-04-25
  • Contact: Zhuang Yan

摘要: 该文研究一类推广的${\bf R}^{d}$中具有有限记忆的随机递归模型,引入了一个与该结构有关的函数$\Psi(\beta),\beta\geq 0$,构造了一个随机测度$\mu_\omega$,证明了由该结构产生的随机集 $K(\omega)$的Hausdorff维数是$\alpha:=\inf\{\beta:\Psi(\beta)\leq1\}$.

关键词: Hausdorff维数, 随机结构, 上鞅, 测度的扩张, 随机测度, 局部维数

Abstract: In this paper, a class of generalized random recursive construction with finite memory in Euclidean $d$-space is researched. For each $\beta\geq 0$, a function $\Psi(\beta)$ assiociated with the construction is introduced and a random measure $\mu_{\omega}$ is constructed. That the Hausdorff dimension of the random limit set $K(\omega)$ generated by the above construction is equal to $\alpha:=\inf\{\beta:\Psi(\beta)\leq1\}$ is proved.

Key words: Hausdorff dimension, Random construction, Supermartingale, Extension of measure, Random measure, Local dimension

中图分类号: 

  • 28A78