数学物理学报

• 论文 • 上一篇    下一篇

交比和Poincare度量在平面拟共形映射下的偏差

褚玉明   

  1. 湖南城市学院数学与计算科学系 益阳 413000
  • 收稿日期:2005-08-18 修回日期:2006-12-28 出版日期:2007-08-25 发布日期:2007-08-25
  • 通讯作者: 褚玉明
  • 基金资助:

    973计划基金(2006CB708304)、国家自然科学基金(10471039)、湖南省自然科学基金(06JJ50010)、浙江省教育厅科研计划重点基金(20060306)和湖州市自然科学基金(2006YZ12)资助

The Distortion of Cross Ratio and Poincare Metric under Plane Quasiconformal Mappings

Chu Yuming   

  1. Department of Mathematics and Computing Science, Hunan City University, Yiyang 413000
  • Received:2005-08-18 Revised:2006-12-28 Online:2007-08-25 Published:2007-08-25
  • Contact: Chu Yuming

摘要: 研究(1)若f是 R2到 R2上的k -拟共形映射, 则对任意x1,x2,x3,x4∈R2
16^{\frac1k-1}(|(x1,x2, x3,x4)|+1)^{\frac1k}
&\leq& \left|\left(f(x_1), f(x_2),f(x_3),f(x_4)\right)\right|+1\\
& \leq& 16^{k-1}\left(|(x_1,x_2,x_3,x_4)|+1\right)^{k};
\end{eqnarray*}

(2)若f是R2到R2上的k -拟共形映射, D是R2中的任一真子域,
则对任意x1,x2∈D有
\begin{eqnarray*}
\frac1k\lambda_D(x_1,x_2)+4(\frac1k-1)\log2
&\leq& \lambda_{f(D)} (f(x_1),f(x_2))\\
&\leq &k\lambda_D(x_1,x_2)+4(k-1)\log2.
\end{eqnarray*}
了交比和Poincar\'e度量在平面拟共形映射下的偏差估计, 得到了如下两个结果.

关键词: 拟共形映射, 交比, Poincare度量, 偏差

Abstract: In this paper, the author studies the distortion of cross ratio and poincar\'e metric under (1) If $f$ is a $k$-quasiconformal self
mapping of $\overline R^2$, then
$16^{\frac1k-1}\left(|(x_1,x_2,x_3,x_4)|+1\right)^{\frac1k}\leq | (f(x_1),f(x_2),f(x_3)$,
$f(x_4) ) |+1
\leq16^{k-1}\left(|(x_1,x_2,x_3,x_4)|+1\right)^{k}$ for any four points $x_1,x_2,x_3$,
$x_4\in\overline R^2$;

(2) If $f$ is a $k$-quasiconformal self mapping of $R^2$ and $D$ is a proper subdomain of $R^2$,
then $\frac1k\lambda_D(x_1,x_2)+4(\frac1k-1)\log2\leq\lambda_{f(D)}(f(x_1),f(x_2))\leq k\lambda_D(x_1,x_2)+4(k-1)\log2$
for any two points $x_1,x_2\in D$
plane quasiconformal mappings, obtaines the following two results.

Key words: Corss ratio, Poincare metric, Distortion; Quasiconformal mapping

中图分类号: 

  • 30C62