数学物理学报

• 论文 • 上一篇    下一篇

哈密顿矩阵的逆特征值问题

孟纯军; 胡锡炎   

  1. 中南大学数学科学与计算技术学院, 长沙 410083;

    湖南大学数学与计量经济学院, 长沙 410082

  • 收稿日期:2005-09-20 修回日期:2006-10-10 出版日期:2007-06-25 发布日期:2007-06-25
  • 通讯作者: 孟纯军
  • 基金资助:
    中国博士后科学基金(20060390888)和国家自然科学基金(10571047)资助

The Inverse Eigenvalue Problem of Hamiltonian Matrices

Meng Chunjun; Hu Xiyan   

  1. School of Mathematical Science and Computing Technology, Central South University, Changsha 410083;
    College of Mathematics and Econometrics, Hunan University, Changsha 410082
  • Received:2005-09-20 Revised:2006-10-10 Online:2007-06-25 Published:2007-06-25
  • Contact: Meng Chunjun

摘要: 该文探讨了哈密顿矩阵的逆特征值问题, 得到了有解的充要条件、通解的表达式以及最小范数解.并给出了最佳逼近解的求法. 给出了相应的算法, 数值实例说明算法是可行的.

关键词: 逆特征值问题, 哈密顿矩阵, 奇异值分解, 最佳逼近解

Abstract:

In this paper the authors mainly discuss the inverse eigenvalue problem of Hamiltonian matrices. The necessary and sufficient conditions of solvability for the problem are conducted. And the general form of solutions is presented. Further, the authors research the optimal approximation solution to any given matrix, prove that such solution is unique and provide the formula to compute it. Some examples are given to demonstrate that the results are right and the algorithm is feasible.

Key words: Inverse eigenvalue problem, Hamiltonian matrix, Singular value decomposition(SVD), Optimal approximate solutions

中图分类号: 

  • 65F15