数学物理学报

• 论文 • 上一篇    下一篇

广义Greiner算子的几类Hardy型不等式

韩军强; 钮鹏程   

  1. 西北工业大学应用数学系 西安 710072
  • 收稿日期:2005-09-23 修回日期:2006-12-28 出版日期:2007-02-25 发布日期:2007-02-25
  • 通讯作者: 韩军强
  • 基金资助:
    国家自然科学基金(10371099)资助

Several Hardy Type Inequalities of Generalized Greiner Operator

Han Junqiang; Niu Pengcheng   

  1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072
  • Received:2005-09-23 Revised:2006-12-28 Online:2007-02-25 Published:2007-02-25
  • Contact: Han Junqiang

摘要: 对构成广义Greiner算子的向量场$X_j = \frac{\partial }{\partial x_j
} + 2ky_j \vert z\vert ^{2k - 2}\frac{\partial }{\partial
t}$, $Y_j = \frac{\partial }{\partial y_j } - 2kx_j \vert z\vert
^{2k - 2}\frac{\partial }{\partial t}$, j = 1,... ,n, x,y∈ Rn, $z = x + \sqrt { - 1} \,y$, t ∈ R, k ≥1, 得到了拟球域内和拟球域外的Hardy型不等式;建立了广义Picone型恒等式,并由此导出比文献[3]更一般的全空间上的Hardy型不等式;并在$p = 2$时建立了具最佳常数的Hardy型不等式.

关键词: 广义Greiner算子, Hardy型不等式, 广义Picone型恒等式, 最佳常数

Abstract: The vector fields $X_j = \frac{\partial}{\partial x_j } + 2ky_j \vert z\vert ^{2k - 2}\frac{\partial}{\partial t}$, $Y_j = \frac{\partial }{\partial y_j } - 2kx_j
\vert z\vert ^{2k - 2}\frac{\partial }{\partial t}$, j = 1,...,n, x,y ∈ Rn, $z = x + \sqrt { - 1} y$, t ∈ R, k ≥ 1 are considered. Hardy type inequalities in the pseudo ball and outside the pseudo ball are obtained. The generalized Picone type identity and then Hardy type inequalities on the whole space containing the known results in [3] are established. When p = 2 the sharp constant in the Hardy type inequality is discussed.

Key words: Generalized Greiner operator, Hardy-type inequalities, Generalized Picone-type identity, Best constant

中图分类号: 

  • 35H99