数学物理学报

• 论文 • 上一篇    下一篇

立方图的对控制数

陈学刚; 孙良; 邢化明   

  1. 华北电力大学数学系 北京 102206
  • 收稿日期:2005-02-20 修回日期:2006-03-25 出版日期:2007-02-25 发布日期:2007-02-25
  • 通讯作者: 陈学刚

Paired-domination Number in Cubic Graphs

Chen Xuegang; Sun Liang; Xing Huaming   

  1. Department of Mathematics, North China Electric Power University, Beijing 102206
  • Received:2005-02-20 Revised:2006-03-25 Online:2007-02-25 Published:2007-02-25
  • Contact: Chen Xuegang

摘要: 设G=(V,E)是一个简单图, 对任意的顶点子集合 $S\subseteq V$, G[S]表示图G中由S所导出的子图. 如果S是G的一个控制集并且G[S]包含至少一个完备匹配, 则称SG的一个对控制集. G中对控制集的最少的顶点数称为$G$的对控制数, 记为γp(G). 该文证明了对任意有n点的连通立方图G, γp(G)≤3n/ 5.

关键词: 对控制数, 立方图, 私有邻域

Abstract: Let G=(V,E) be a simple graph. For a subset $S\subseteq V$, let G[S] denote the subgraph of G induced by S. S is a paired-dominating set of G if S is a dominating set of G and G[S] contains at least one perfect matching. The paired domination number, denoted by γp(G), is the minimum cardinality of a paired dominating set of G. In this paper, the authors show that for any
cubic graph G of order n, γp(G)≤3n/ 5.

Key words: Paired domination number, Cubic graph, Private neighbor

中图分类号: 

  • 05C05