数学物理学报

• 论文 • 上一篇    下一篇

构造相应于有限维非退化可解李代数的顶点代数

王书琴   

  1. 哈尔滨师范大学数学与计算机科学学院数学系, 哈尔滨 150080
  • 收稿日期:2005-08-17 修回日期:2006-04-30 出版日期:2006-12-25 发布日期:2006-12-25
  • 通讯作者: 王书琴
  • 基金资助:
    黑龙江省自然科学基金、黑龙江省教育厅科学技术研究项目资助

Vertex Algebra Associated to Nondegenerate Solvable Lie Algebras

Wang Shuqin   

  1. Department of Mathematicsl, Harbin Normal University, Harbrn 150080
  • Received:2005-08-17 Revised:2006-04-30 Online:2006-12-25 Published:2006-12-25
  • Contact: Wang Shuqin

摘要: g是带有非退化不变对称双线性型的有限维可解李代数, 该文首先应用g的仿射李代数{\heiti $\hat{g}$}的表示理论,构造出一类水平为l的限制$\hat{g}$ -模$V_{\hat{g}}(l,0)$.然后应用顶点算子的局部理论在hom$(V_{\hat{g}}(l,0),V_{\hat{g}}(l,0)((x)))$中 找到一类顶点代数$L_{V_{\hat{g}}(l,0)}$.建立了$L_{V_{\hat{g}}(l,0)}$到 $V_{\hat{g}}(l,0)$的映射,最后证明了这类映射是顶点代数同构.

关键词: 非退化可解李代数的顶点代数, 水平为$l$的限制$\hat{g}$ -摸, Jacobi -等式及弱交换性和D -导子-换位公式, 顶点代数同构

Abstract: The main purpose of this article is to construct the vertex algebra of associated to finite-nondegenerate solvable Lie algebra. Avoid the notion of module of vertex algebra and tire some the Jacobi identity. Apply the equivalent condition with the Jacobi identity:the weak commutativity and the D-derivatve-bracket formula. On the theorems of the representation of finite-nondegenerate solvable Lie algebra g and the level l restricted module of the affine algebra $\hat{g}$ of g. Construct and prove a kind the vertex algebras , which equipped the structure of different with that the vertex algebra of associated to Heisenberg algebra and non-twist Kac-moody algebra.

Key words: The level l restricted module of the affine algebra $\hat{g}$, The vertex algebra of associated to finite-nondegenerate solvable Lie algebra, Jacobi-identity and the weak associativity and the D-derivative-bracket formulas

中图分类号: 

  • 17B69