数学物理学报

• 论文 • 上一篇    下一篇

偶数阶Sturm-Liouville边值问题的多个正解

孙红蕊;李万同   

  1. 兰州大学数学与统计学院 兰州 730000
  • 收稿日期:2004-09-29 修回日期:2006-03-10 出版日期:2006-10-25 发布日期:2006-10-25
  • 通讯作者: 孙红蕊
  • 基金资助:
    国家自然科学基金(10571078),兰州大学理论物理与数学纯基础科学基金(Lzu05-03)和教育部高

Multiple Positive Solutions for Even Order Sturm-Liouville Boundary Value Problems

Sun Hongrui ; Li Wantong   

  1. chool of Mathematic and Statistics, Lanzhou University, Lanzhou 730000
  • Received:2004-09-29 Revised:2006-03-10 Online:2006-10-25 Published:2006-10-25
  • Contact: Sun Hongrui

摘要: 该文讨论了偶数阶边值问题 (-1)m y(2m)=f(t,y), 0≤t≤1,
ai+1y(2i) (0)-βi+1y (2i+1) (0)=0, γi+1y(2i) (1)+δi+1y(2i+1) (1)=0,0≤i ≤m-1
正解的存在性.借助于Leggett-Williams 不动点定理,建立了该问题存在三个及任意奇数个正解的充分条件.

关键词: 正解, 锥, 不动点, 边值问题

Abstract:

In this paper the authors discuss the existence of positive solution to the following even order boundary value problem

(-1)m y(2m)=f(t,y), 0≤t≤1,
ai+1y(2i) (0)-βi+1y (2i+1) (0)=0, γi+1y(2i) (1)+δi+1y(2i+1) (1)=0,0≤i ≤m-1

Sufficient conditions are obtained for existence of three or arbitrary odd
positive solutions of the above problem by using Leggett-Williams fixed
point theorem.

Key words: Positive solution, Cone, Fixed point, Boundary value problem

中图分类号: 

  • 34B15