数学物理学报

• 论文 • 上一篇    下一篇

线性过程关于大数律的精确渐近性

李云霞   

  1. 浙江财经学院 杭州 310018
  • 收稿日期:2004-08-30 修回日期:2006-04-11 出版日期:2006-10-25 发布日期:2006-10-25
  • 通讯作者: 李云霞
  • 基金资助:
    浙江省教育厅2006年度科研基金(20060122)资助

Precise Asymptotics in the Law of Large Numbers of Moving-average Processes

Li Yunxia   

  1. Zhejiang University of Finance and Economics, Hangzhou 310018
  • Received:2004-08-30 Revised:2006-04-11 Online:2006-10-25 Published:2006-10-25
  • Contact: Li Yunxia

摘要: 该文主要讨论的是滑线性过程 $X_k=\sum\limits_{i=-\infty}^\infty a_{i+k}\varepsilon_i$,
其中 $\{\varepsilon_i; -\infty$\varphi$ -混合或负相伴随机变量序列,
$\{a_i;-\infty令 $S_n=\sum\limits_{k=1}^nX_k, n\geq 1$, 作者证明了,
对于 $1\leq p<2$ 以及 $r>p$, 若 $E|\varepsilon_1|^r<\infty$
$$\lim_{\epsilon\searrow 0}\epsilon^{2(r-p)/(2-p)}\sum\limits_{n=1}^\infty n^{r/p-2}
P\{|S_n|\geq \epsilon
n^{1/p}\}=\frac{p}{r-p}E|Z|^{2(r-p)/(2-p)},$$ 其中 $Z$ 是服从均值为零,
方差为 $\tau^2=\sigma^2\cdot(\sum\limits_{i=-\infty}^\infty a_i)^2$的正态分布.

关键词: 线性过程, φ -混合, 负相伴, Baum-Katz 律, 完全收敛性

Abstract: In this paper, the author discusses moving-average process
$X_k=\sum\limits_{i=-\infty}^\infty a_{i+k}\varepsilon_i$,
where $\{\varepsilon_i; -\infty $\varphi$-mixing or negatively associated random variables with mean zeros and finite variances,
$\{a_i;-\infty $S_n=\sum\limits_{k=1}^nX_k, n\geq 1$, the author proves that, if
$E|\varepsilon_1|^r<\infty$, then, for $1\leq p<2$ and $r>p$
$$\lim_{\epsilon\searrow 0}\epsilon^{2(r-p)/(2-p)}\sum\limits_{n=1}^\infty n^{r/p-2}
P\{|S_n|\geq \epsilon
n^{1/p}\}=\frac{p}{r-p}E|Z|^{2(r-p)/(2-p)},$$
where $Z$ has a normal distribution with mean 0 and variance
$\tau^2=\sigma^2\cdot(\sum\limits_{i=-\infty}^\infty a_i)^2.

Key words: Moving-average process, φ -mixing, Negative association, Baum-Katz law, Complete convergence.

中图分类号: 

  • 60F15