数学物理学报

• 论文 • 上一篇    下一篇

一类单调变分不等式的非精确交替方向法

童小娇;何炳生   

  1. 长沙理工大学数学与计算科学学院 长沙 410077
  • 收稿日期:2003-08-23 修回日期:2004-12-16 出版日期:2006-04-25 发布日期:2006-04-25
  • 通讯作者: 童小娇
  • 基金资助:
    国家自然科学基金(60474070)、湖南省自然科学基金(03JJY6002, 04JJ3031)和湖南省教育厅基金

An Inexact Alternating Direction Method for Solving a Class of Monotone Variational Inequalities

Tong Xiaojiao;He Bingsheng   

  1. Institute of Mathematics, Changsha University of Science and Technology, Changsha 410077
  • Received:2003-08-23 Revised:2004-12-16 Online:2006-04-25 Published:2006-04-25
  • Contact: Tong Xiaojiao

摘要: 交替方向法适合于求解大规模问题.该文对于一类变分不等式提出了一种新的交替方向法.在每步迭代计算中,新方法提出了易于计算的子问题,该子问题由强单调的线性变分不等式和良态的非线性方程系统构成.基于子问题的精确求解,该文证明了算法的收敛性.进一步,又提出了一类非精确交替方向法,每步迭代计算只需非精确求解子问题.在一定的非精确条件下,算法的收敛性得以证明.

关键词: 变分不等式, 交替方向法, 非精确法, 收敛性

Abstract: Alternating direction methods are suitable ones for solving large-scale problems. This paper presents a new alternating direction method for a class of variational inequalities. At each iteration, the proposed subproblem consists of a strongly monotonic linear variational inequality and a well-conditioned system of nonlinear equations, which is easily to be solved. The convergence theorem of the proposed method is proved based on the exact solution of the subproblem. Furthermore, the authors develop the proposed alternating direction method as an inexact method, which only needs to solve the subproblem inexactly. Under some inexact conditions, the convergence of inexact alternating direction method is proved too.

Key words: Variational inequality, Alternating direction method, Inexact method,
Convergence

中图分类号: 

  • 90C30