数学物理学报

• 论文 • 上一篇    下一篇

三角形二次插值系数有限元法解半线性椭圆问题的超收敛性

熊之光;陈传淼   

  1. 湖南师范大学计算研究所 长沙 410008
  • 收稿日期:2003-12-28 修回日期:2005-04-29 出版日期:2006-04-25 发布日期:2006-04-25
  • 通讯作者: 熊之光
  • 基金资助:
    国家重点基础研究计划(G1999032804)及国家自然科学基金项目(1999032804)资助

Supperconvergence of Triangular Quadratic Finite Element Method with Interpolated Coefficients for Nonlinear Elliptic Problem

Xiong Zhiguang;Chen Chuanmiao   

  1. Institute of Computation, Hunan Normal University, Changsha 410081
  • Received:2003-12-28 Revised:2005-04-29 Online:2006-04-25 Published:2006-04-25
  • Contact: Xiong Zhiguang

摘要: 基于均匀三角形的剖分求解一类二阶半线性椭圆问题,用插值系数有限元方法比经典有限元法更容易实现,与经典二次有限元一样,二次插值系数有限元方法在对称点处也有四阶超收敛精度,数值计算表明这些结论是正确的.

关键词: 半线性椭圆问题, 三角形二次元, 插值系数, 超收敛

Abstract: To solve the semilinear elliptic problem, the triangular quadratic finite elements and interpolated coefficient finite elements are discussed. Superconvergence O( h4)at each vertex and side midpoint is proved, which is similar to that of classical finite elements. These facts are also shown by numerical examples.

Key words: Semilinear elliptic problems, Triangular quadratic finite element, Interpolated Coefficient, Superconvergence

中图分类号: 

  • 65N30