数学物理学报

• 论文 • 上一篇    下一篇

Banach空间中渐近非扩张映象的修正Reich-Takahashi型迭代法的强收敛性

曾六川   

  1. 上海师范大学数学系
  • 收稿日期:2003-10-29 修回日期:2004-12-18 出版日期:2006-02-25 发布日期:2006-02-25
  • 通讯作者: 曾六川
  • 基金资助:

    高等学校优秀青年教师教学和科研奖励基金;上海市高校科技发展基金(部分);上海市科委重大项目基金(部分)资助

On the Strong Convergence of the Modified Reich-Takahashi

Zeng Liuchuan   

  1. Department of Mathematics, Shanghai Normal University
  • Received:2003-10-29 Revised:2004-12-18 Online:2006-02-25 Published:2006-02-25
  • Contact: Zeng Liuchuan

摘要: 设E是具有一致正规结构的实Banach空间,其范数是一致Gateaux可微的.设D是E的非空有界闭凸子集,T:→D是渐近非扩张映象.该证明了,在一些适当的条件下,修正的Reich-Takahashi型迭代法强收敛到渐近非扩张映象T的不动点

关键词: 不动点, 渐近非扩张映象, 修正的Reich-Takahashi型迭代法, 一致正规结构, 一致Gateaux可微范数

Abstract: Let E be a real Banach space with uniform normal structure, whose norm is uniformly Gateaux differentiable. Let D be a nonempty bounded closed convex subset of $E$ and $T:D\rightarrow D be an asymptotically nonexpansive mapping. It is shown that under some suitable conditions,the modified Reich-Takahashi type iteration method converges strongly to a fixed point of T.

Key words: Fixed point, Asymptotically nonexpansive mapping, Modified Reich-Takahashi type iteration method, Uniform normal structure, Uniformaly Gateaux differentiable norm

中图分类号: 

  • 47H09