数学物理学报

• 论文 • 上一篇    下一篇

一类带有接种的流行病模型的全局稳定性

李建全;马知恩   

  1. 西安交通大学应用数学系 空军工程大学数理系
  • 收稿日期:2003-10-17 修回日期:2004-08-08 出版日期:2006-02-25 发布日期:2006-02-25
  • 通讯作者: 李建全
  • 基金资助:
    国家自然科学基金(19971066)和中国博士后基金(2005037785)资助

Global Stability of an Epidemic Model with Vaccination

Li Jianquan;Ma Zhien   

  1. Department of Applied Mathematics Department of Mathematics and Physics, Air Force Engineering University
  • Received:2003-10-17 Revised:2004-08-08 Online:2006-02-25 Published:2006-02-25
  • Contact: Li Jianquan

摘要: 该文讨论了一类带有接种的流行病模型. 在该模型中假设恢复后的个体与被接种的个体均具有确定的免疫期, 它是一个时滞微分系统. 通过分析, 得到了地方病平衡点存在的阈值, 以及无病平衡点和地方病平衡点局部渐近稳定和全局渐近稳定的充分条件.

关键词: 流行病模型, 接种, 平衡点, 稳定性

Abstract: An SIRS epidemic model with vaccination is investigated in this paper. For this model, the authors assume that both the immunity periods of the removed individuals and the vaccinated individuals are fixed constants, which may be different each other. For locally asymptotical stability and globallyasymptotical stability of the disease-free equilibrium and the endemic equilibrium, sufficient conditions are obtained for this model.

Key words: Epidemic model, Vaccination, Equilibrium, Stability

中图分类号: 

  • 34K20