[1]Adler S L. Quaternionic Quantum Mechanics and Quantum Fields. New York:Oxford University Press, 1994
[2]曹重光. 任意除环上矩阵的对合函数. 数学学报,1989,32(1):118 -121
[3]李桃生. P除环上子空间的交与和. 数学物理学报,1995,15(4):467-472
[4]李桃生. P除环上矩阵的幂的性质. 数学物理学报,2000,20(3): 419-424
[5]张锦川. 两类四元数矩阵偶的GH合同标准形. 数学物理学报,2002,22A(2):217-224
[6]庄瓦金. 任意体上矩阵的对合函数与广义逆. 东北数学,1987,3(1):57-66
[7]庄瓦金. 任意体上矩阵的ρ MoorePenrose逆的某些显式. 数学季刊,1988,3(2):1-6
[8]庄瓦金. EP矩阵的HartwigSpindelbock问题与ρ MoorePenrose逆的倒换顺序律 .数学学报,1990,33(6):791-797
[9]屠伯勋. P除环上矩阵的广义逆. 数学学报,1986,29(2):246-24 8
[10]曹重光. 体上分块矩阵群逆的某些结果. 黑龙江大学自然科学学报,2001,18(3):5-7
[11]Chen Yonglin. A crammer rule for solution of the general restr icted linear equations.Lin and Multilin Algebra, 1993,34:177- 186
[12]Ben Israel A,Greville T N E. Generalized Inverses: Theory and Applications. New York: Wiley,1974
[13]Wei Yimin. A characterization and representation of the generalized inverse A^2_{T,S} and its applications. Linear, Algebra Appl, 1998,280: 87-96
[14]Wei Yimin,Wu Hebin.(T,S)splitting methods for computing the generalized inverse A^2_{T,S}and rectangular systems.Int J Computer Math, 2001,77(3):404-424
[15]王国荣, 高王景. 广义逆 A^2_{T,S}的子式.计算数学, 2001,23(4):437-446
[16]谢邦杰. 抽象代数学. 上海: 上海科学技术出版社, 1982.278-386
|