数学物理学报 ›› 2004, Vol. 4 ›› Issue (6): 786-795.

• 论文 • 上一篇    

广义系统的Hamilton矩阵与H\-2代数Riccati方程的稳定化解

 杨冬梅, 张庆灵, 姚波, 荆海英   

  1. 东北大学理学院
  • 出版日期:2004-12-25 发布日期:2004-12-25
  • 基金资助:

    国家自然科学基金(70271066)和辽宁省普通高校学科带头人基金(124210)资助

Hamilton Matrix and the Stabilizing Solutions of〖STHZ〗 the H\-2 Algebraic

 YANG Dong-Mei, ZHANG Qiang-Ling, TAO Bei, JING Hai-Yang   

  • Online:2004-12-25 Published:2004-12-25
  • Supported by:

    国家自然科学基金(70271066)和辽宁省普通高校学科带头人基金(124210)资助

摘要:

研究线性连续广义系统的Hamilton矩阵及H\-2代数Riccati方程. 提出一个标准的广义H\-2代数Riccati方程及对应的Hamilton矩阵,给出该Hamilton矩阵的几个重要性质. 在此基础上,得到该广义H\-2代数Riccati方程的稳定化解存在的一个充分条件并给出求解方法.此条件具有一般性, 主要定理是正常系统相应结果的推广.

关键词: 广义系统, Hamilton矩阵, H\-2代数Riccati方程, 稳定化解.

Abstract:

Hamilton matrix and \$H\-2\$ algebraic Riccati equations for linear continuoustime descriptor systems are studied. A standard singular \$H\-2\$ algebraic Riccati equation and its associated Hamilton matrix are presented. Some important properties of the Hamilton matrix are given. Furthermore, a sufficient condition such that the stabilizing solutions of the equations exist is obtained and the solutions algorithm is given. This condition is of generality. The main theorems are the extension of some results of normal systems.

中图分类号: 

  • 93C