[1]Hopfield J J.Neurons with graded response have collective computational prope rties like those of two stageneu rons.Proc Nat Acad Sci,1984,81: 3088-3092
[2]Kosko B. Neural Networks and Fuzzy Systems A Dynamical Systems App roach to Machine Intelligence. Engle wood Cliffs, NJ: Prentice Hall International Inc, 1992. 38-108
[3]Hopfield J J. Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad USA,1982, 79: 2554-2558
[4]Hunt K J, Sbarbaro D, Zbikowki R. Neural networks for controlA survey. Automatic, 1992, 28: 1083-1112
[5]Zhao Hongyong, Xu Daoyi. Stability analysis of bidirectional associative memory neural networks with distributed delays.四川大学学报,2001, 38: 466-469
[6]Zhao Hongyong. Global stability of of bidirectional associative memory neural networks with distributed delays.Physics Letters A, 2002, 297: 182-190
[7]Xu Daoyi, Zhao HongyongInvariant and attracting sets of Hopfield neural networks with delays.International Journal of Systems Science, 2001, 32: 863-866
[8]Xu Daoyi, Zhao Hongyong. Global dynamics of Hopfield neural net works inv olving variable delays. Computers and Mathematics with Applications, 2001, 42: 39-45
[9]廖晓昕,肖冬梅. 具有变时滞的 Hopfield 型神经网络的全局指数稳定性. 电子学报2000, 28: 87-90
[10]曹进德, 周冬明. 时延细胞神经网络的全局稳定性分析. 生物数学学报,1999, 14: 65-71
[11]廖晓峰,虞厥邦. 延迟双向联想记忆神经网络的周期振荡现象研究.电子科学学刊, 1999, 21: 60-65
[12]Cao Jinde. On exponential stability and periodic solutions of CNNS with delays. Physics Letters A, 2000, 267: 312-318
[13]Cao Jinde. Global exponential stability of Hopfield neural networks. International Journal of Systems Science, 2001, 32: 233-236
[14]廖六生. 二元神经网络的概周期解存在性. 生物数学学报,2001, 16: 169-174
[15]陈安平, 黄立宏. Hopfield 神经网络的概周期解存在性和全局吸引性.数学物理学报,2001, 21A(4): 505-511
[16]Chen Anping, Cao Jinde. Almost periodic solution of shunting inhibitory CNNs with delays. 2002, 298: 161-170
[17]He Chongyou. Almost periodic differential equations.Beijing: Higher Education Publishing House, 1992
|