[1]KharitonovVLAsymptotic stability of an equilibriumposition of a family of systems of linear differential equations.Differential Uravnen,1978,14:086-2088; Translation in Differential equations, 1979, 14: 1483-1485
[2]Bartlett A C, Hollot C V, Lin H. Root Location of entire polytope of polynomials: it suffices to check the edges. Mathematics of Controls, Signals and Systems, 1988, 1: 61-71
[3]Chapellat H, Bhattacharyya S P. A generalization of Kharitonov's theorem: robust stability of interval plants.IEEE Trans on Automatic Control, 1989, AC-34: 306-311
[4]Kharitonov V L. Interval Stability of Quasipolinomials,In: S. P. Bhattacharyya and L. H. Keel,Control of Uncertain,Dynamic Systems,Littleton, MA: CRC Press, 1991.439-446
[5]Fu M,Barmish B R.Polytopes and polynomials with zeroes in a prescribed set.IEEE Trans on Automatic Control,1989,AC-34:544-546
[6]Kharritonov V L, Zhabko A P. Robust stability of time delay systems.IEEE Trans.on Automatic Control,1994,AC-39: 2388-2397
[7]Chapellat H, Bhattacharyya S P, Dahleh M. Robust stbility of a family of disc polynomials.International Journal of Control, 1990, 51: 1353-1362
[8]Bhattacharyya S P, Chapellat H, Keel L H. Robust Control:The Paramatric Approach. Prentice hall, 1995
[9]Barmish B R. New tools for robustness analysis. In Proceedings of the 27th IEEE Conference on Decision and Control.TX: Austin, 1988. 1-6
|