[1]Davies E B. Heat Kernels and Spectral Theory.Cambridge: Cambridge University Press,1989
[2]Li P, Yau ST. On the parabolic kernel of the Schrodinger operat or. Acta Math, 1986,156: 153-201
[3]Scheon R, Yau ST. Lectures on Differential Geometry. Combridge: International Press, 1994
[4]David Gilbarg, Neil S, Trudinger. Elliplic Partial Differential Equations of Second Order.Berlin Heidelberg: Springer Verlag, 2001
[5]Issac Chavel. Eigenvalus in Riemannian Geometry.Orleads: Academic Press,1984
[6]Cheng SY, Li P, Yau ST. Heat equations on Minimal Submanifolds and Their Applications. Manuscript
[7]Bueler E. The heat kernel with weighted hodge Laplacian on noncompact manifolds. Trons Amer Math Soc, 1999, 351: 683-713
[8]Jose F. Escobar&Alexandre Freire, the spectrum of the lplacian of manifol ds of positive curvature. Duke Math J, 1992, 65(1): 1-21
[9]Jose F. Escobar&Alexandre Freire, the differential form spectrum of mani folds of positive curvature. Duke Math J,1993, 69(1): 1-41
[10]Harold Donnelly, Peter Li. Lower bounds for the eigenvalues of rie mannian manifolds. Michigan Math J,1982, 29: 149-161
[11]Harold Donnelly, Peter Li. Lower bounds for the eigenvalues of negative ly curved manifolds. Math Z, 1980, 172: 29-40
[12]Isaac Chavel. Riemannian Geometry:A Modern Introdution.Cambridge: Cambridge University Press,1993
[13]Cheeger J, Ebin D G. Comparison Theorens in Riemannian Geometry.Netherlands: NorthHolland Publishing Company, 1975
[14]Eschanburg J H. Comparison theorems and hypersurfaces.Manuscripta Math, 1987, 59: 295-323
[15]Reed M, Simon B. Method of Modern Mathematical Physical. New York: Func tional Analysis Academic Press, 1972
[16]伍鸿熙. 微分几何中的Bochner技巧(上). 数学进展,1981, 10(1) : 57-76
[17]伍鸿熙. 微分几何中的Bochner技巧(下). 数学进展,1982, 11(1) : 19-61
[18]白正国,沈一兵. 黎曼几何初步. 北京: 高等教育出版社,1992
|