[1]Kuang Y, Feldstein A. Boundedness of solutions of a nonlinear nonautonomous neutral delay equation. J Math Anal Appl, 1991, 156: 293-304
[2]Gopalsamy K, He X, Wen L. On a periodic neutral logistic equation. Glasgow Math J, 1991, 33: 281-286
[3]Lu Shiping, Ge Weigao. Existence of positive periodic solutions for neutral logarithmic population model with multiple delays. J Computational and AppledMath, 2004, 166(2): 371-383
[4]Pielou E C. Mathematics Ecology, WileyInterscience. New York: Academic Press, 1977\
[5]Kuang Y. Delay Differential Equations with Applications in Population Dynamics. New York: Academic Press, 1993
[6]Y K L. Positive periodic solutions for a neutral delay model. Acta Math Sinica, 1996, 36(6): 789-795
[7]Fang Hui, Li Jibin. On the existence of periodic solutions of a neutral delay model of singlespecies population growth.
J Math Anal Appl, 2001,259(1): 8-17
[8]Deimling K. Nonlinear Functional Analysis. Berlin: SpringerVerlag, 1985
[9]Liu Z D, Mao Y P. Existence theorem for periodic solutions of higher orde
r nonlinear differential equations. J Math Anal Appl, 1997,216(2): 481-490
[10]Petryshyn W V, Yu Z S. Existence theorem for periodic solutions of higher order nonlinear periodic boundary value
problems. Nonlinear Anal, 1982, 6(9): 943-969
[11]Lu Shiping. On the existence of positive periodic solutions for func
tion differential equation with multiple deviating arguments. J Math Anal Appl, 2003,280(2): 321-333 |